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I. Introduction

Predicting the electronic structure of extended
organic molecules constitutes an important funda-
mental task of modern chemistry. Studies of elec-
tronic excitations, charge-transfer, energy-transfer,
and isomerization of conjugated systems form the
basis for our understanding of the photophysics and
photochemistry of complex molecules1-3 as well as
organic nanostructures and supramolecular assem-
blies.4,5 Photosynthesis and other photochemical bio-
logical processes that constitute the basis of life on
Earth involve assemblies of conjugated chromophores
such as porphyrins, chlorophylls, and carotenoids.6-8

Apart from the fundamental interest, these studies
are also closely connected to numerous important
technological applications.9 Conjugated polymers are
primary candidates for new organic optical materials
with large nonlinear polarizabilities.10-19 Potential
applications include electroluminescence, light emit-
ting diodes, ultrafast switches, photodetectors, bio-
sensors, and optical limiting materials.20-27

Optical spectroscopy which allows chemists and
physicists to probe the dynamics of vibrations and
electronic excitations of molecules and solids is a
powerful tool for the study of molecular electronic
structure. The theoretical techniques used for de-
scribing spectra of isolated small molecules are
usually quite different from those of molecular crys-
tals, and many intermediate size systems, such as
clusters and polymers, are not readily described by
the methods developed for either of these limiting
cases.28
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Solving the many-electron problem required for the
prediction and interpretation of spectroscopic signals
involves an extensive numerical effort that grows
very fast with molecular size. Two broad classes of
techniques are generally employed in the calculation
of molecular response functions. Off-resonant optical
polarizabilities can be calculated most readily by a
variational/perturbative treatment of the ground
state in the presence of a static electric field by
expanding the Stark energy in powers of electric field.
The coupled perturbed Hartree-Fock (CPHF) pro-
cedure computes the polarizabilities by evaluating
energy derivatives of the molecular Hamiltonian. It
usually involves expensive ab initio calculations with
basis sets including diffuse and polarized functions,
that are substantially larger than those necessary for
computing ground-state properties.14

The second approach starts with exact expressions
for optical response functions derived using time-
dependent perturbation theory, which relate the
optical response to the properties of the excited
states. It applies to resonant as well as off-resonant
response. Its implementation involves calculations of
both the ground state and excited-state wave func-
tions and the transition dipole moments between
them.29,30 The configuration-interaction/sum-over-
states (CI/SOS) method15,31 is an example for this
class of methods. Despite the straightforward imple-
mentation of the procedure and the interpretation of
the results in terms of quantum states (which is
common in quantum chemistry), special care needs
to be taken when choosing the right configurations.
In addition, this method is not size-consistent,32,33 and
intrinsic interference effects resulting in a near
cancellation of very large contributions further limit
its accuracy and complicate the analysis of the size-
scaling of the optical response. The SOS approach has

been widely applied using semiempirical Hamilto-
nians (e.g., simple tight-binding or Hückel, π-electron
Pariser-Parr-Pople (PPP), valence effective Hamil-
tonians (VEH), complete neglect of differential over-
lap (CNDO), and intermediate neglect of differential
Overlap (INDO) models).14,15,34-39 The global eigen-
states carry too much information on many-electron
correlations, making it hard to use them effectively
for the interpretation of optical response and the
prediction of various trends.

A completely different viewpoint is adopted in
calculations of infinite periodic structures (molecular
crystals, semiconductors, large polymers). Band struc-
ture approaches that focus on the dynamics of
electron-hole pairs are then used.40-44 Band theories
may not describe molecular systems with significant
disorder and deviations from periodicity, and because
they are formulated in momentum (k) space they do
not lend themselves very easily to real-space chemical
intuition. The connection between the molecular and
the band structure pictures is an important theoreti-
cal challenge.45

To formulate a unified formulation that bridges the
gap between the chemical and semiconductor points
of view, we must retain only reduced information
about the many-electronic system necessary to cal-
culate the optical response. Certainly, the complete
information on the optical response of a quantum
system is contained in its set of many-electron
eigenstates |ν〉, |η〉, ... and energies εν, εη, ....29 Using
the many-electron wave functions, it is possible to
calculate all n-body quantities and correlations. Most
of this information is, however, rarely used in the
calculation of common observables (energies, dipole
moments, spectra, etc.) which only depend on the
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expectation values of a few (typically one- and two-)
electron quantities. In addition, since even in practi-
cal computations with a finite basis set, the number
of molecular many-electron states increases expo-
nentially with the number of electrons, exact calcula-
tions become prohibitively expensive even for fairly
small molecules with a few atoms. A reduced descrip-
tion that only keeps a small amount of relevant
information is called for. A remarkably successful
example of such a method is density-functional
theory (DFT),46-51 which only retains the ground-
state charge density profile. The charge density of
the nth orbital is

where |g〉 denotes the ground-state many-electron
wave function and cn

† (cn) are the Fermi annihilation
(creation) operators for the nth basis set orbital, when
the overlap between basis set functions is neglected,
the molecular charge density depends on Fnn. Hohen-
berg and Kohn’s theorem proves that the ground-
state energy is a unique and a universal functional
of the charge density,52,53 making it possible in
principle to compute self-consistently the charge
distribution and the ground-state energy.

The single-electron density matrix54-60 given by

is a natural generalization of the ground-state charge
density (eq 1.1). Here |ν〉 and |η〉 represent global
electronic states, whereas n and m denote the atomic
basis functions. Fνν is the reduced single-electron
density matrix of state ν. For ν * η Fνη is the density-
matrix associated with the transition between ν and
η. These quantities carry much more information
than Fjnn ≡ Fnn

gg (For brevity, the ground-state density
matrix Fgg will be donoted Fj throughout this review),
yet considerably less than the complete set of
eigenstates.51,61-66

Density functional theory has been extended to
include current (in addition to charge) density.67 The
current density can be readily obtained from the near
diagonal elements of the density matrix in real space.
The current is thus related to short range coherence,
whereas the density matrix includes short as well as
long range coherence. The single electron density
matrix is the lowest order in a systematic hierarchy.
Higher order density matrices (2 electron, etc.) have
been used as well in quantum chemistry. They retain
successively higher levels of information.68-73 Green
function techniques provide an alternative type of
reduced description.74,75

The wave function of a the system driven by an
optical field is a coherent superposition of states

and its density matrix is given by

Fnm
νη are thus the building blocks for the time-de-

pendent single-electron density matrix Fmn(t).
The greatly reduced information about the global

eigenstates contained in the matrices Fνη is sufficient
to compute the optical response. To illustrate this,
let us consider the frequency-dependent linear po-
larizability R(ω) (see Appendix F3).

where µgν ≡ 〈g|µ|ν〉 are the transition dipoles, and
Ων ≡ εν - εg are the transition frequencies. Γ is a
phemenological dephasing rate which accounts for
both homogeneous (e.g., an interaction with bath) and
inhomogeneous (e.g., static distribution of molecular
transition frequencies) mechanisms of line broaden-
ing (for a review see ref 76).

The molecular dipole µ is a single-electron operator
that may be expanded in the form

We therefore have

The matrices Fgν and the corresponding frequencies
Ων thus contain all necessary information for calcu-
lating the linear optical response. Complete expres-
sions for higher order polarizabilities up to third
order and other spectroscopic observables are given
in Appendix F.

Equation 1.2 apparently implies that one first
needs to calculate the eigenstates |ν〉 and |g〉 and then
use them to compute the matrix elements Fgν. If that
was the case, no computational saving is obtained
by using the density matrix. However, its great power
is derived from the ability to compute the electronic
response directly, totally avoiding the explicit calcu-
lation of excited states: the time-dependent varia-
tional principle (TDVP)64,65,77,78 and time-dependent
density-functional theory (TDDFT)49,50,79,80 in the
Kohn-Sham (KS) form52,53 are two widely used
approaches of this type. In either case, one follows
the dynamics of a certain reduced set of parameters
representing the system driven by an external field.
In the TDVP, these parameters describe a trial many-
electron wave function, whereas in TDDFT they
represent a set of KS orbitals. The time-dependent
Hartree-Fock (TDHF) equations are based on the
TDVP where the trial wave function is assumed to
belong to the space of single Slater determinants.77,81

Both TDHF and the TDDFT follow the dynamics
of a similar quantity: a single Slater determinant
that can be uniquely described by an idempotent
single-electron density matrix F (with F2 ) F).62,63,77,78

However, they yield different equations of motion for
F(t), stemming from the different interpretation of
F(t). In the TDHF, F(t) is viewed as an approximation
for the actual single-electron density matrix,77 whereas
in TDDFT F(t) is an auxiliary quantity constrained

R(ω) ) ∑
ν

2Ωνµgνµgν
/

Ων
2 - (ω + iΓ)2

(1.5)

µ ) ∑
nm

µmncn
†cm (1.6)

µgν ) ∑
nm

µmnFnm
gν (1.7)

Fjnn ) 〈g|cn
†cn|g〉 (1.1)

Fnm
νη ≡ 〈ν|cn

†cm|η〉 (1.2)

Ψ(t) ) ∑
ν

aν(t)|ν〉 (1.3)

Fnm(t) ≡ 〈Ψ(t)|cn
†cm|Ψ(t)〉 ) ∑

νη
aν
/(t)aη(t)Fnm

νη (1.4)
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to merely reproduce the correct electronic charge
distribution at all times.52,53 TDDFT is formally exact.
However, in practice it yields approximate results
since exact expressions for the exchange-correlation
energy Exc[n(r)] and the corresponding potential vxc(r,
[n]) in the KS scheme are not available and are
introduced semiempirically. A close resemblance
between TDHF and TDDFT (especially its adiabatic
version) may be established by formulating KS
density functional theory (DFT) in terms of the
density matrix F rather than on the KS orbitals.78

This formal similarity makes it possible to apply the
same algorithms for solving the equations for the
matrices Fgν ≡ êν (Abbreviated notation êν for the
family of single-electron density matrices Fgν will be
used throughout this review) and frequencies Ων,
directly avoiding the tedious calculations of global
eigenstates in both cases.

This review focuses on the TDHF method,77,82-88

which combined with a semiempirical model Hamil-
tonian provides a powerful tool for studying the
optical response of large conjugated molecules and
chromophore aggregates.81,89-96 The accuracy of this
combination is determined by the approximations
involved in closing the TDHF equations and by the
semiempirical models. The TDDFT approach is on
the other hand usually based on the ab initio Hamil-
tonians,49,50,79,80,97,98 making these computations sig-
nificantly more expensive and limited to smaller
molecular systems than TDHF/semiempirical tech-
nique. F(t) computed in the TDHF approach provides
the variation of electron charge distribution (diagonal
elements) and the optically induced coherences, i.e.,
changes in chemical bond orders, (off-diagonal ele-
ments) caused by an external field. The latter are
essential for understanding optical properties of
conjugated molecules and for the first-principles
derivation of simple models for photoinduced dynam-
ics in molecular aggregates (e.g., the Frenkel-exciton
model).90

The TDHF equation of motion for the single-
electron density matrix (eq A4 in Appendix A) was
first proposed by Dirac in 1930.99 This equation has
been introduced and explicitly applied in nuclear
physics by Ferrel.100 The TDHF description was
widely used in nuclear physics in the 50-60s.101-104,83,84

The random phase approximation (RPA) was first
introduced into many-body theory by Pines and
Bohm.105 This approximation was shown to be equiva-
lent to the TDHF for the linear optical response of
many-electron systems by Lindhard.106 (See, for ex-
ample, Chapter 8.5 in ref 83. The electronic modes
are identical to the transition densities of the RPA
eigenvalue equation.) The textbook of D. J. Thouless82

contains a good overview of Hartree-Fock and TDHF
theory.

The RPA approach was subsequently introduced
into molecular structure calculations and was exten-
sively studied in 60th and 70th as an alternative to
the CI approach for solving many-electron problems.
The RPA theory was developed based on the particle-
hole propagators or two-electronic Green’s functions
technique74 employing a direct decoupling of equa-
tions of motion107,108 or perturbative approach.109,110

In this language, the RPA procedure corresponds to
the summation of ring diagrams to infinite order.82,104

The RPA approach in combination with the Pariser-
Par-Pople (PPP) Hamiltonian111,112 was used to study
low-lying excited states of ethylene and formaldehyde
by Dunning and McKoy in 1967.113,114 This investiga-
tion concluded that the RPA results are superior to
single-electron transition approximation and are very
similar to CI Singles (the latter coincides with the
Tamm-Dancoff approximation). Subsequent compu-
tations of small molecules,107,108,115-121 such as ben-
zene,107 free radicals118 diatomics and triatomics,117

showed high promise of RPA for molecular excitation
energies. However, it was found that the first-order
RPA yields inaccurate results for triplet states113,119

and impractical for unstable HF ground state.122-126

This happens when electronic correlations (doubles
and higher orders) are significant for the ground-
state wave function, and the Hartree-Fock reference
state becomes a poor approximation for the true
ground state wave function. For example, large
contributions from doubly excited configurations lead
to imaginary RPA energies of triplet states in both
ethylene and formaldehyde.113,114 Several improved
schemes that take into account correlations beyond
the first-order RPA have been suggested120,127-133 to
avoid these difficulties. Subsequently, RPA-based
methods have been applied to calculate dynamics
polarizabilities of small molecules using an analytical
propagator approach.134-137 We refer readers to re-
views104,74,138,75 for further details of this early devel-
opment of RPA approaches.

Zerner and co-workers had subsequently attempted
to use RPA as an alternative to Singles CI for
computing molecular electronic spectra with ZINDO
code.139-141 However, historically, these early RPA
advances did not develop into standard quantum
chemical software. Modern computational pack-
ages142-145 usually offer extensive CI codes but not
propagator-based techniques for handling the elec-
tronic correlations. However, current studies of propa-
gator techniques146,147 will be gradually incorporated
into quantum-chemical software.

Faster computers and development of better nu-
merical algorithms have created the possibility to
apply RPA in combination with semiempirical Hamil-
tonian models to large molecular systems. Sekino and
Bartlett85,86,148,36 derived the TDHF expressions for
frequency-dependent off-resonant optical polarizabili-
ties using a perturbative expansion of the HF equa-
tion (eq 2.8) in powers of external field. This approach
was further applied to conjugated polymer chains.
The equations of motion for the time-dependent
density matrix of a polyenic chain were first derived
and solved in refs 149 and 150. The TDHF approach
based on the PPP Hamiltonian111,112 was subse-
quently applied to linear and nonlinear optical re-
sponse of neutral polyenes (up to 40 repeat units)151,152

and PPV (up to 10 repeat units).153-155 The electronic
oscillators (We shall refer to eigenmodes of the
linearized TDHF eq êν with eigenfrequencies Ων as
electronic oscillators since they represent collective
motions of electrons and holes (see Section II))
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contributing to the response were identified, and the
size-scaling of optical susceptibilities were analyzed.
Further development of the classical TDHF repre-
sentation and algebra of electronic oscillators77,156-158

reduced the number of independent variables to
electron-hole oscillators representing occupied-
unoccupied orbital pairs. These developments evolved
into the collective electronic oscillator (CEO) ap-
proach for molecular electronic structure.

In this article, we review the basic ideas and recent
developments in the CEO framework for computing
the optical excitations of large conjugated systems
and connecting them directly with the motions of
electron-hole pairs in real space. The CEO approach
solves the TDHF equations to generate the electronic
normal modes; quasiparticles which represent the
dynamics of the optically driven reduced single
electron density matrix. Fast Krylov-space based
algorithms for the required diagonalization of large
Hamiltonian matrices are used to calculate excited-
state structure of organic molecular systems with
hundreds of heavy atoms with only moderate com-
putational effort.

A real space analysis of electronic normal modes
(transition densities) results in a systematic proce-
dure for identifying the electronic coherence sizes
which control the scaling and saturation of spectro-
scopic observables with molecular size. Localization
of these density matrices is further used to simplify
the description of the optical response of large
molecules by dissecting them into coupled chromo-
phores. Illustrative examples are presented, includ-
ing linear polyenes, donor/acceptor substituted oli-
gomers, poly-phenylenevinylene (PPV) oligomers,
chlorophylls, naphthalene and PPV dimers, phenyl-
acetylene dendrimers, and photosynthetic light-
harvesting antenna complexes.

In Section II, we describe the CEO computational
approach combined with semiempirical molecular
Hamiltonian. Section III presents a real space analy-
sis of electronic excitations and optical response of
different conjugated molecules. In Section IV, we
compute interchromophore interactions to derive an
effective Frenkel exciton Hamiltonian for molecular
aggregates. Finally, summary and discussion are
presented in Section V.

II. The CEO Formalism
The CEO computation of electronic structure81,89

starts with molecular geometry, optimized using
standard quantum chemical methods,142-144 or ob-
tained from experimental X-ray diffraction or NMR
data. For excited-state calculations, we usually use
the INDO/S semiempirical Hamiltonian model (Sec-
tion IIA) generated by the ZINDO code;145,159-163

however, other model Hamiltonians may be employed
as well. The next step is to calculate the Hartree-
Fock (HF) ground state density matrix. This density
matrix and the Hamiltonian are the input into the
CEO calculation. Solving the TDHF equation of
motion (Appendix A) involves the diagonalization of
the Liouville operator (Section IIB) which is ef-
ficiently performed using Krylov-space techniques:
e.g., IDSMA (Appendix C), Lanczos (Appendix D), or

Davidson’s (Appendix E) algorithms. A two-dimen-
sional real space representation of the resulting
transition density matrices is convenient for an
analysis and visualization of each electronic transi-
tion and the molecular optical response in terms of
excited-state charge distribution and motions of
electrons and holes (Section IIC). Finally, the com-
puted vertical excitation energies and transition
densities may be used to calculate molecular spec-
troscopic observables such as transition dipoles,
oscillator strengths, linear absorption, and static and
frequency-dependent nonlinear response (Appendix
F). The overall scaling of these computations does not
exceed ∼K3 in time and ∼K2 in memory (K being the
basis set size) for both ground and excited-state (per
state) calculations. Typically, direct diagonalization
of the Liouville operator L or CI Singles matrix A
without invoking Krylov-space methods increases the
computational cost to ∼K6 in time and ∼K4 in
memory for the excited states. The cost is even higher
(∼K8-12) for methods taking into account higher order
electronic correlations, such as higher order CI,
coupled cluster and CAS-SCF.60

A. Electronic Hamiltonian and Ground State
Calculations

The general Hamiltonian of a molecule interacting
with an external field in second quantization form
reads60

where the subscripts m, n, k, l run over known atomic
basis functions {øn} and σ,σ′ label spin components.
These atomic orbitals are assumed to be orthogonal

cnσ
† (cnσ) are the creation (annihilation) operators

which satisfy the Fermi anticommutation relations

and all other anticommutators of c† and c vanish.
The first term in eq 2.1 is the core single-body

Hamiltonian describing the kinetic energy and nuclear
attraction of an electron

where RA is the nuclear coordinate of atom A. The
second two-body term represents electron-electron
Coulomb interactions where

Ĥ ) ∑
mnσ

tmncmσ
† cnσ + ∑

mnkl
σσ′

〈nm|kl〉cmσ
† cnσ′

† ckσ′clσ -

E(t)∑
mnσ

µmncmσ
† cnσ, (2.1)

〈n|m〉 ≡ ∫dr1øn
f(1)øm(1) ) δnm (2.2)

cmσcnσ′
† + cnσ′

† cmσ ) δmnδσσ′ (2.3)

tnm ) 〈n| -
1

2
∇1

2 - ∑
A

ZA

|r1 - RA||m〉 ≡

∫dr1øn
f(1) (-1

2
∇1

2 - ∑
A

ZA

|r1 - RA|) øm(1) (2.4)

〈nm|kl〉 ≡ ∫dr1dr2øn
f(1)øm

f(2) 1
r12

øk(1)øl(2) (2.5)
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are the two-electron integrals. The interaction be-
tween the electrons and the external electric field E(t)
polarized along the chosen z-axis is given by the last
term in eq 2.1, µ being the dipole operator

To simplify the notation, we hereafter focus on closed-
shell molecules and exclude spin variables assuming
that N electron pairs occupy K (N e K) spatial atomic
orbitals. Generalization to the unrestricted opened-
shell case and nonorthogonal basis set is pos-
sible.60 The ground state is obtained by solving the
Schrödinger equation ĤΨ ) EΨ for the ground-
state assuming the simplest antisymmetric wave
function, i.e., a single Slater determinant Ψ )
|φ1(1)φ2(2)...φN(2N)〉60 (HF approximation). Here {φR}
are the molecular orbitals (MO). Following Roothaan’s
procedure,60,164 they are expanded as linear combi-
nations of localized atomic basis functions {øn}

The HF approximation maps the complex many-body
problem onto an effective one-electron problem in
which electron-electron repulsion is treated in an
average (mean field) way. Even though the resulting
ground state is uncorrelated, this approximation
works reasonable well for majority of extended mo-
lecular systems. However, the HF solution is not
always stable, in particular, for opened-shell124-126

and near degenerate cases (e.g., conical intersec-
tions165,166).

The HF eigenvalue equation is derived by mini-
mizing the ground-state energy with respect to the
choice of MOs

This equation may be recast using the density matrix
in the form

For closed-shells, the ground-state density matrix is
related to the MO expansion coefficients (eq 2.7) as

F(Fj) is the Fock matrix with matrix elements

and the matrix representation of the Coulomb elec-
tronic operator V in the atomic basis set {øn} is

The HF eq 2.9 for Fj is nonlinear and may be readily
solved iteratively using the self-consistent field (SCF)
procedure.60

In all computations presented below, we use a
semiempirical (INDO/S) parametrization of the Hamil-
tonian (2.1) that was fitted to reproduce the spectra
of simple molecules at the singly excited CI level. The
INDO approximation159-163 limits the basis set to
valence orbitals of Slater type. Exchange terms in the
two-electron interaction are permitted only among
orbitals located on the same atom

where øn
A belongs to atom A and øn

B to atom B. The
tetradic matrix 〈ønøk|ømøl〉 thus becomes block-diago-
nal in two dimensions. Thus, this approximation
limits the number of computed Coulomb matrix
elements and allows the storing of all of them in
memory instead of recalculating them when needed
as is commonly done in ab initio computations,
making semiempirical techniques significantly easier
and faster.

The parameters of the INDO/S Hamiltonian are
given in refs 159-163. This widely used model first
introduced by Pople159,160 and later carefully param-
etrized by Zerner and collaborators to reproduce UV-
visible spectra of small organic chromophores at CI
single level.161-163,167-172 The INDO/S parameters
were initially available for the main group ele-
ments161,162 and subsequently for transition
metals,163,168,173-175 actinides,176 and lanthanides.177,178

Special attention was paid to reproduce triplet
states.167 INDO/CIS calculations have been success-
fully applied to studies of electronically excited states
in a wide variety of chromophores,179,180 and this
model is currently widely used in optical response
computations.14,15,181 The ZINDO code145 developed by
Zerner and co-workers serves as a convenient plat-
form for these calculations. In addition to the CIS
calculations, they have investigated how INDO works
with RPA approximation for molecular excited
states139-141 using conventional diagonalization of the
RPA matrix (see Section IIB). These studies con-
cluded that the INDO/RPA excited-state energies are
close to INDO/CIS where both show some red-shifts
compared to experiment. However, RPA shows better
accuracy for the oscillator strengths and for molec-
ular systems with fine splittings in the spectrum such
as free base porphins.140 We also found that the
TDHF (RPA) combined with the INDO/S Hamilto-
nian works extremely well for many molecules with-
out further reparametrization and thus provides an
alternative approach for computing their optical
properties.182,183 Typically, this method reproduces
vertical excitation energies with accuracy of 0.1-0.3
eV, whereas transition dipoles and nonlinear polar-
izabilities agree with experimental data within 10%
and 20-30%, respectively.182,183

Effects of the surrounding media (e.g., solvent) may
be readily incorporated using the self-consistent
reaction field (SCRF) approach,184,185 whereby the
interaction energy between a solute and the solvent
is added to the HF energy of an isolated molecule,
and the total energy of the system is then minimized
self-consistently. The SCRF method is based on

〈øn
A øk

B|øm
A øl

B〉 ) {〈øn
A øk

A|øm
A øl

A〉 A ) B,
〈øn

A øk
B|øn

A øk
B〉δnmδkl, A * B,

(2.13)

µnm ) 〈n|µz|m〉 ≡ ∫dr1øn
f(1)z1øm(1) (2.6)

φR ) ∑
i

K

CRiøi (2.7)

FC ) Cε (2.8)

[F(Fj), Fj] ) 0 (2.9)

Fjnm ) 2∑
a

Nocc

CnaCma
f ) 2∑

a

N

CnaCma
f (2.10)

Fnm(Fj) ) tnm + Vnm(Fj) (2.11)

V(Fj)mn ) ∑
k,l

K

Fjkl[〈ml|nk〉 -
1

2
〈ml|kn〉] (2.12)
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classical ideas originally introduced by Onsager186

and Kirkwood.187

For electrically neutral solutes, only the dipolar
interactions contribute to the solvation energy. In the
Onsager’s spherical cavity model, the Fock operator
Fmn is then modified by adding the response of a
dielectric medium, resulting in

where Fmn
0 is the isolated complex Fock operator, µbg

is the ground-state dipole moment, ε is the dielectric
constant, and ao is a cavity radius. The second
Onsager dipolar term in eq 2.14 has been de-
rived188,185 assuming that the solute is separated from
the solvent by a sphere of radius ao. The Gaussian
98 package142 provides a reasonable estimate for a
cavity radius.

Onsager’s SCRF is the simplest method for taking
dielectric medium effects into account and more
accurate approaches have been developed such as
polarizable continuum modes,189,190 continuum di-
electric solvation models,191,192 explicit-solvent dynamic-
dielectric screening model,193,194 and conductor-like
screening model (COSMO).195 Extensive refinements
of the SCRF method (spherical, elliptical,188 multi-
cavity models) in conjunction with INDO/CIS were
introduced by Zerner and co-workers185,196-202 as
well.

The shape of the cavity has some effect on the
molecular polarizabilities;203,204 however, the methods
taking into account “real” molecular shapes are
computationally expensive and are most appropri-
ately utilized with accurate ab initio or density
functional theory (DFT) approaches.205,206 Even though
spherical cavity is a crude approximation for most
molecules, the predicted trends usually agree well
with experiment and with the results of much more
sophisticated and expensive methods.182,185,200

B. Computation of Electronic Oscillators
Using the ground-state density matrix as an input,

the CEO procedure81,89 computes vertical transition
energies Ων and the relevant transition density
matrices (denoted electronic normal modes (êν)mn )
〈g|cm

† cn|ν〉), which connect the optical response with
the underlying electronic motions. Each electronic
transition between the ground state |g〉 and an
electronically excited state |ν〉 is described by a mode
which is represented by K × K matrix. These modes
are computed directly as eigenmodes of the linearized
time-dependent Hartree-Fock equations of motion
for the density matrix (eq A4) of the molecule driven
by the optical field.

where L is a linear Liouville space operator (i.e.,
superoperator) whose eigenvectors are the transition
densities êν.81,89 The electronic modes obey normal-
ization conditions (see Section B)

The complete set of density matrices (eq 1.2) may be
subsequently calculated using the êν eigenvectors.207

Only particle-hole and hole-particle components of
êν are computed in the restricted TDHF scheme77

(Appendix A). Therefore, this non-Hermitian eigen-
value problem of dimension 2M × 2M, M ) Nocc ×
Nvir ) N × (K - N) in the MO basis set representa-
tion may be recast in the form82,74

This is known as the first-order RPA eigenvalue
equation,79,107,113,127,130,131,208 where X and Y are, re-
spectively, the particle-hole and hole-particle com-
ponents of the transition density ê ) [Y

X] in the MO
representation.77,79,80,113,120,208 In eq 2.18, the matrix
A is Hermitian and identical to the CI Singles matrix,
whereas the Hermitian matrix B represents higher
order electronic correlations (double excitations) in-
cluded in the TDHF approximation. We recall, how-
ever, that the TDHF uses the HF ground state
(Section IIA) as a reference state. If this state is
unstable (e.g., saddle point) near curve crossings or
conical intersections, or if the second-order electronic
correlations are large (the magnitudes of matrix B
elements are comparable to that of matrix A), eq 2.18
may have imaginary eigenvalues (frequencies). In
this case, the first-order RPA breaks down,113,120 and
higher order RPA are called for.128-131,133,209 We note
that the extended conjugated molecular systems
considered in this review have stable HF ground
state (closed shell), and the first-order RPA is well
suited for computing their electronic excitations. We
therefore restrict our subsequent discussion to this
approximation.

The formal properties of operator L eq 2.18 (known
as the symplectic structure77) allow the introduction
of a variational principle eq D3,210 a scalar product
(eq B1), and ultimately to reduce the original non-
Hermitian eigenvalue problem (eq 2.18) to the equiva-
lent Hermitian problem which may be solved using
standard numerical algorithms (Appendices B-E).
For example, L2 is a Hermitian operator. Löwdin’s
symmetric orthogonalization procedure60,211,212 leads
to the Hermitian eigenvalue problem as well (eq E5),
which may be subsequently solved by Davidson’s
algorithm (Appendix E). The spectral transform
Lanczos method developed by Ruhe and Ericsson213

is another example of such transformation.
Direct diagonalization of the TDHF operator L or

the CIS operator A in eq 2.18 is the computational
bottleneck, requiring computational effort which
scales as ∼K6 in time and ∼K4 in memory (for
comparison, SCF ground-state calculations scales as
∼K3 in time and ∼K2 in memory) because we are
working in the space of higher dimensionality (elec-
tron-hole pairs). Direct diagonalization of eq 2.18
should give the entire spectrum of excited states. The
traditional quantum-chemical approach addresses

Tr(Fj[êR
†, êâ]) ) δRâ (2.16)

Tr(Fj[êR
†, êâ

†]) ) Tr(Fj[êR, êâ]) ) 0 (2.17)

(A B
-B -A )[XY ] ) Ω[XY ] (2.18)

Fmn ) Fmn
0 - ε - 1

2ε + 1
µbg ‚ µbmn

ao
3

(2.14)

Lêν ) Ωνêν Lêν
† ) -Ωνêν

† ν ) 1, ..., K2/2
(2.15)
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this problem by limiting the total basis set size
variables K to a few MOs which are “important” for
visible-UV optical response. Indeed, most of the
electronic states obtained by diagonalization of eq
2.18 lie in the X-ray spectral region and correspond
to atomic-core type transitions. Visible-UV collective
molecular excitations, on the other hand, could be
adequately described by truncating an active space,
taking into account only few MOs close to HOMO-
LUMO energy gap. Although this approach works
quite well and the ZINDO code161,163,168 became very
successful, truncating the active space is a compli-
cated and somewhat arbitrary procedure. In addition,
even truncated CI calculations are usually signifi-
cantly more expensive than ground-state computa-
tions. The effects of size of the active space on the
computed spectra of small molecules for CIS and RPA
approximations have been studied by Zerner and
Baker.139 They showed that (i) even minimal con-
figurational space (∼7 eV) provides qualitative de-
scription for lowest electronic transition, (ii) fairly
large active space is required (∼10 eV) (The number
of molecular orbitals and subsequently the CI expan-
sion size grows very rapidly with the active space
window size) to account for all essential configura-
tions, and (iii) inaccuracy grows for higher lying
electronic transitions. Figure 1 shows variation of
energy of calculated 1E1u state of benzene (the third
transition in electronic spectrum) as a function of
active space size. These data are extracted from ref
139. Both CI Singles and RPA energies show consid-
erable red-shift with increasing the active space size.
It is interesting to note that CI Singles gives the
closest agreement with experiment for the small
active space size used for parametrizing the INDO/S
model. This points out the need for a future reparam-
etrization of the INDO/S Hamiltonian to account for
the entire active space.

An alternative solution to this problem is provided
by fast Krylov-space algorithms.214,215 These tech-
niques construct a small subspace of orthogonal vec-
tors which contains a good approximation to the true
eigenvector. This Krylov subspace Sp{ê, Lê, L2ê, ...,
Ljê}, j , M, spans the sequence of vectors generated
by the power method (the multiple action of the RPA

operator L on some initial vector ê). These methods
find several eigenvalues and eigenvectors of a large
matrix L using only matrix-vector operations.214,215

Indeed, usually only a small fraction of eigenstates
of L (∼100) lie in the UV-visible region and are of
interest for optical spectroscopy. In addition, the
action of the TDHF operator L on an arbitrary single
electron matrix ê, which only contains particle-hole
and hole-particle components is given by

This product may therefore be calculated on the fly
without constructing and storing the full matrix L
in memory.77,79-81,89,208 The action of the CIS operator
A on an arbitrary matrix ê can be also computed
directly216,217 (e.g., using eq 2.19 by setting the hole-
particle component of ê to zero). The cost of such
operation in Hilbert (K × K) space scales as ∼K3 in
time and ∼K2 in memory with system size. Comput-
ing a single eigenvalue-eigenvector of matrix L which
corresponds to molecular excited state thus requires
a computational effort comparable to that of the
ground state.

In Appendices D, E, and C, we outline three
Krylov-space based algorithms. The original Lanczos
algorithm computes effectively the lowest eigenvalue
and the corresponding eigenvector of a large Hermi-
tian matrix.214,218 Since the matrices L that need to
be diagonalized in the TDHF or adiabatic TDDFT
approaches are non-Hermitian, a modified nonstand-
ard Lanczos algorithm should be used219-221 (Ap-
pendix D). Similarly, Davidson’s algorithm originally
formulated for the diagonalization of large Hermitian
CI matrices216 was further modified for the TDHF208,222

and adiabatic TDDFT49,50,79,80,97,217 methods. A third
method for computing the lowest frequency eigen-
mode of a large Hamiltonian matrix is based on the
iterative density matrix spectral moments algorithm
(IDSMA).81,89 All three algorithms show similar scal-
ing of computational time, resulting from K × K
matrix multiplications. However, the scaling prefac-
tors are different. The Davidson type algorithms,
especially the recently improved versions,79,80,142 are
extremely fast but I/O (input/output) intensive, since
one needs to keep all the previous iterations for the
eigenmodes throughout the iteration procedure. Con-
sider, for example, the computation of the lowest
eigenmode of a matrix using the Davidson iteration
in a 200 dimension Krylov space (default maximum
dimension in the Gaussian 98). To improve the
accuracy, we need to calculate the 201st trial Krylov
vector, which should be orthogonal to all others. This
requires storing of all previous 200 vectors! On the
other hand, to compute the 201st vector in the
Lanczos procedure we only need the 200th and the
199th vectors: by orthogonalizing the 201st to the
200th and 199th, it automatically becomes orthogonal
to all previous vectors. The need to store only two
vectors, rather than 200, constitutes a substantial
improvement in memory requirements of Lanczos
over Davidson’s. However, the Lanczos method usu-
ally requires larger Krylov-space dimension to obtain
an approximate eigenvalue with the same accuracy
as Davidson’s. The latter thus converges faster and

Figure 1. Benzene 1E1u transition as a function of active
space calculated with CI Singles and RPA methods com-
bined with INDO/S model. Adapted from Baker and Zerner
ref 139.

Lê ) [F(Fj),ê] + [V(ê), Fj] (2.19)
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generally involves lower computational effort com-
pared to Lanczos. This fast convergence is ensured
by Davidson’s preconditioning (Appendix E), which
assumes that the matrices L (or A) are dominated
by their diagonal elements.216 In practice, the Lanczos
is 2-4 times faster than the IDSMA; however, the
IDSMA has low memory requirements and allows to
compute both “exact” and “effective” eigenstates. The
latter may represent the overall contribution from
several electronic states to the optical response by a
single effective state,89,81 providing an approximation
for the spectrum in terms of very few variables.91

There is no clear single method of choice and different
algorithms may be preferable for specific applica-
tions.

All algorithms converge to the lowest eigenmode,
and higher eigenmodes can be successively obtained
(Appendix D) by finding the lowest mode in the
subspace orthogonal to that spanned by the lower
modes already found. This orthogonalization proce-
dure is not always stable, leading to the accumulation
of numerical error for the higher modes. A deflection
procedure214,219,223 that involves the antisymmetric
scalar product eq B1 may be alternatively used to
solve this problem. There is a whole arsenal of other
related algorithms, such as Chebyshev’s polyno-
mial224,225 and Arnoldi’s226-228 which may be used as
well. These are included in standard packages such
as Matlab.

These outlined numerical methods are commonly
used in quantum-chemical computations and became
a part of standard quantum-chemical packages.142-144

However, new developments in computational tech-
niques may offer even faster and more dependable
numerical algorithms (such as “the rational Krylov
algorithm for nonsymmetric eigenvalue problems”
proposed by Ruhe229-232) which will undoubtedly find
their place in the future quantum-chemical codes.

C. Real Space Analysis of Electronic Response
Each calculated transition density matrix Fgν ≡ êν

with the corresponding frequency Ων enters the
TDHF equations of motion as an electronic oscillator.
Density matrices establish a natural connection
between electronic structure and the molecular opti-
cal response. The ground-state density matrix Fjmn ≡
〈g|cm

† cn|g〉 is widely used in the description of the
ground-state properties.54,55,233-235 Its diagonal ele-
ments Fjnn are used in various types of population
analysis56,59,233,234,236 to prescribe a charge to specific
atoms and are commonly visualized using contour
charge density maps. The off-diagonal elements,
m * n, known as bond orders represent the bonding
structure associated with a pair of atomic orbitals
and are useful for interpreting the chemical bonding
pattern across the molecule.57-60,233,234

In complete analogy with Fj, the diagonal elements
of (êν)nn represent the net charge induced on the nth
atomic orbital when the molecule undergoes the g to
v electronic transition, whereas (êν)mn n * m is the
dynamical bond-order representing the joint ampli-
tude of finding an extra electron on orbital m and a
hole on orbital n. The electronic modes thus directly
show the flow of optically induced charges and

electronic coherences. To display these modes, we
need to coarse grain them over the various orbitals
belonging to each atom. The INDO/S Hamiltonian
uses from one to nine atomic orbitals (s, p, and d type)
for each atom. In practice, the hydrogen atoms that
weakly participate in the delocalized electronic ex-
citations (such as π-type) are usually omitted. For
other atoms, we use the following contraction: the
total induced charge on each atom A is given by the
diagonal elements

whereas an average over all the off-diagonal elements
represents the effective electronic coherence between
atoms A and B

Here the indices nA and mB run over all atomic
orbitals localized on atoms A and B, respectively. The
size of the matrix (êν)AB is now equal to the number
of heavy atoms. (For planar molecules it is sufficient
to include the π-electron contributions perpendicular
to the molecular plane to represent π-excitations
since σ contributions are usually negligible.) The
resulting two-dimensional representation of the elec-
tronic modes (êν)AB is useful for interpreting and
visualizing these collective electronic motions in
terms of the electronic density matrix in real
space.81,90-92 This is illustrated schematically by
Figure 2: the coordinate axes label atoms and indices
A and B of matrix (êν)AB run along the y and x axes,
respectively.

Two types of characteristic size for the degree of
localization of the mode (êν) may be clearly identified.
The diagonal size (Ld) reflects the number of atoms
over which the optical excitation is spread, i.e., the
width of the distribution of the electron hole pair
center of mass. The off-diagonal size Lc measures the
degree of coherence between electrons and holes at
different sites, and control the scaling of molecular
properties with size. It reflects the size of electron-
hole pair created upon optical excitation, (i.e., the
confinement of their relative motion). Ld and Lc can
be calculated quantitatively as follows.237 To intro-
duce Ld, we first define a normalized probability
distribution of the charge induced on the nth atom

Ld is then defined as the inverse participation ratio
associated with the distribution of populations:

For a localized excitation on site k Pn ) δnk and Ld )
1; For a delocalized excitation Pn ) 1/L and Ld ) L.

(êν)A ) |∑nA

(êν)nAnA| (2.20)

(êν)AB ) x ∑
nAmB

[(êν)nAmB
]2 (2.21)

Pn )
|ênn|

∑
j
|êjj|

(2.22)

Ld ≡ [∑
n

Pn
2]-1 (2.23)
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Lc can be defined in terms of coherence participa-
tion ratio.237,238 At first, we introduce a normalized
probability distribution of the density matrix ele-
ments

Lc is then defined as follows:

For tightly bound e-h pairs Qnm ) δnm/Ld and Lc )
1; for loosely bound e-h pairs Qnm ) 1/Ld

2 and Lc ∼
L. Both Lc and Ld thus vary between 1 and L, where
L is the number of atoms. Unlike Ld, which only

depends on the populations, Lc measures the degree
of coherence and is sensitive to the off-diagonal
elements of the density matrix. Both Lc, and Ld
depend on the basis set.

Note, that Ld and Lc defined by eqs 2.23 and 2.25,
respectively, represent a total number of atoms
involved into electronic excitation, whereas coherence
sizes obtained from the two-dimensional plots reflect
the extent of the transition densities in real space.
They may not be the same. For example, the exciton
corresponding to the band-gap excitation in PPV (see
Section IIIA) is extended over 5 repeat units (40
atoms) (Figure 3I). However, the coherence size Lc
computed with eq 2.25 is only 26 atoms. This reflects
uneven participation of phenyl and vinyl carbon
atoms in the optical excitation. In remainder of the
paper, we will be using two-dimensional plots to
obtain necessary coherence sizes relevant to the
delocalization of the transition densities in real space.

The significance of the CEO oscillators may be
explained by drawing upon the analogy with the
description of vibrational spectroscopy,239 whereby
the coherent motion of various atoms with well-
defined amplitude and phase relations are repre-
sented by collective nuclear coordinates; the normal

Figure 2. Two-dimensional representation and physical
significance of electronic modes. Each mode êν is an L × L
matrix, L being the number of atoms. The contour plot
provides a direct real-space connection between the optical
response and motions of charges in the molecule upon
optical excitation. The x axis represents an extra electron
on site n, and the y axis describes an extra hole on site m.
The incident light moves an electron from some occupied
to an unoccupied orbitals, creating an electron-hole pair
(or exciton). The state of this pair can be characterized by
two lengthscales: first, the distance between electron and
hole (i.e., how far the electron can be separated apart from
the hole). This coherence size Lc is the “width” of the
density matrix along the antidiagonal direction. The second
length Ld describes the exciton center of mass position (i.e.,
where the optical excitation resides within the molecule).
Ld is the “width” of the mode along the diagonal antidi-
agonal direction. Charge-transfer processes can be char-
acterized by the asymmetry of mode with respect to the
diagonal symmetrical mode atom. (êν)mn ∼ (êν)nm means
that there is no preferable direction of motion for electrons
(or holes), whereas (êν)mn > (êν)nm shows the transfer of
electron from m to n.

Qnm )
|ênm|

∑
ij

|êij|
(2.24)

Lc ≡ [Ld∑
mn

Qnm
2 ]-1 (2.25)

Figure 3. (A) Geometry and atom labeling of PPV oligo-
mers. Molecular structure was optimized using the Austin
model 1 (AM1) semiempirical model492 in Gaussian 98
package;142 (B) Absorption spectrum of PPV(10). Dashed
line: experimental absorption of a PPV thin film.243 Solid
line: absorption line shape of PPV(10) obtained with 12
effective modes DSMA calculation with line width Γν ) 0.1
eV; Contour plots of ground-state density matrix Fj and five
electronic modes (I-V) which dominate the linear absorp-
tion of PPV(10). The sizes of plotted matrices are 78 × 78
(equal to the number of carbon atoms in PPV(10)). The axis
are labeled by the repeat units. The color maps are given
on the top of color plots. Reprinted with permission from
ref 91. Copyright 1997 American Association for the
Advancement of Science.

3180 Chemical Reviews, 2002, Vol. 102, No. 9 Tretiak and Mukamel



modes. The normal modes provide a natural coordi-
nate system and a highly intuitive classical oscillator
real-space interpretation of infrared or Raman spec-
tra,240,241 which offers an alternative to the descrip-
tion in terms of transitions among specific vibrational
states. The normal modes of nuclear vibrations are
simply superpositions of the 3N nuclear displace-
ments. In complete analogy, êν can be viewed as
collective coordinates which represent not the indi-
vidual electrons but the displacements of the elec-
tronic density matrix elements from their ground-
state values Fjnm.

The electronic modes provide a direct real-space
link between the structure of complex molecules such
as organic oligomers with a delocalized π-electronic
system and their optical properties. They clearly
show how specific variations in molecular design,
such as chain length or donor/acceptor substitutions,
can impact their optical response. In the remainder
of the paper, we apply this approach to various
classes of molecules and to different types of optical
response. The two-dimensional real space analysis
of the transition densities (slices16 or two-dimensional
plots181) provides an attractive alternative to the
traditional molecular orbital based quantum-chemi-
cal analysis of photoexcitation processes.

III. Electronic Coherence Sizes Underlying the
Optical Response of Conjugated Molecules

A. Linear Optical Excitations of Poly(p-phenylene
vinylene) Oligomers

In this section, we examine the electronic excita-
tions of poly(p-phenylene vinylene) (PPV) oligomers
(Figure 3A) and their scaling with molecular size.91,96,95

Understanding the electronic structure and the over-
all electronic excitation processes in this photolumi-
nescent polymer is needed to provide a consistent
picture for the numerous experimental242-250 and
theoretical16,95,149,153,251-253 studies of PPV.

The absorption spectrum of PPV(10) calculated
using the CEO/DSMA algorithm combined with
INDO/S Hamiltonian (Figure 3B, solid line)91 is not
inconsistent with the experimental spectrum of PPV
thin film243 (dashed line), which is typical for other
PPV derivatives.254,243,255 The experimental absorp-
tion has a fundamental band at 2.5 eV (I), two weak
peaks at 3.7 eV (II) and 4.8 eV (III), and a strong
band at 6.0 eV (IV). Peak II originates from electron
correlations247,253,255 and is missed by HF calculations.

Before analyzing the transition densities underly-
ing each absorption peak, let us examine the ground-
state density matrix. A contour plot of the absolute
value of the matrix elements of Fj of PPV(10) is shown
in Figure 3. The matrix size has been reduced
according to contraction eqs 2.20 and 2.21. It is equal
to the number of carbon atoms, and the axes are
labeled by repeat units along the chain. Fj is domi-
nated by the diagonal and near-diagonal elements,
reflecting the bonds between nearest neighbors. The
five oscillators denoted I-V which dominate the
optical absorption are shown as well. All transition
densities are almost symmetric with respect to the
diagonal (êmn ≈ ênm). This reflects the absence of

charge separation for the lack of preferable direction
of motion for electrons (or holes). Mode I is delocal-
ized. The coherence size, Lc, that is the “width” of the
density matrix along the antidiagonal section, where
the coherences decrease to <10% of their maximum
values, is 4-5 repeat units. Therefore, 10 repeat
units already mimic the infinite chain as far as the
optical spectrum is concerned.91

Mode II has a similar Lc as mode I, but a nonuni-
form diagonal space distribution. The molecule is
dissected into three parts with diagonal size of 3, 4,
and 3 repeat units with a very weak electronic
coherence between them, and the molecule is ef-
fectively a trimer. The total contribution from the
ends to the oscillator strength of this mode is very
small, and only the middle region contributes.81 This
mode therefore only makes a weak contribution to
the linear absorption. Mode III which also makes a
weak contribution to the absorption spectrum has
five noninteractive segments with off-diagonal and
diagonal sizes of about 2 repeat units. Similar to
mode II, only the middle region contribute to the
oscillator strength of this transition. The middle
frequency modes II and III thus have strong transi-
tion dipoles localized at the molecular ends which
overall does not contribute to their oscillator strengths
but could play an important role in charge separation
processes, e.g., photoconductivity of PPV oligo-
mers.248,256

Electronic modes (I-III) show an effective separa-
tion of molecule to segments with weak electronic
coherence among them. The higher frequency modes
tend to have more diagonal nodes.91,81,89,96,95 The
modes with odd number of nodes computed in ref 95
with the Lanczos algorithm do not contribute to the
linear absorption and therefore do not show up in the
DSMA computations. The nth mode (in order of
increasing energy) thus has n - 1 nodes. Cancellation
of the transition dipoles leads to vanishing oscillator
strength of electronic modes with odd number of
nodes, whereas the oscillator strength of electronic
modes with even number of nodes scales as ∼1/n2.
The connection to band theories could be drawn by
associating an exciton with momentum n to the
electronic mode with n nodes. For example, mode I
corresponds to the band exciton with zero momen-
tum. The energy difference between modes I-III
stems from edge effects and vanishes in an infinite
ideal chain. The appearance of these modes in the
experimental spectrum may be attributed to struc-
tural disorder effects which limit the effective con-
jugation length of the polymer.

The higher frequency modes (IV) and (V) are
completely localized on a single repeat unit. The
optically induced coherences in the fourth peak (IV)
only involves the phenylene ring carbon atoms 1, 2,
4, and 5, in agreement with earlier results obtained
in refs 255 and 257 The high-frequency peak (V)
corresponds to localized and weakly delocalized tran-
sitions involving the vinylene group atoms 7 and 8,
and the phenylene ring atoms 3 and 6. These calcula-
tions further show that the frequencies of modes I,
II, III are red-shifted and gradually saturate with
increasing chain length, whereas the frequencies of
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modes IV and V are not affected by size. These trends
are consistent with the delocalized and localized
nature, respectively, of the two groups of modes. One
important consequence of this localization of optical
excitations is that the Frenkel exciton model for
molecular aggregates may be applied to high fre-
quency spectral region in PPV, even though the
chromophores are not separated spatially (see Section
IV). Subsequent CI/INDO computations16,253 which
used the slices of transition density to study the
coherence sizes and formulated an essential-state
single-chain model to model linear and nonlinear
response of PPV oligomers are in agreement with this
analysis.

B. Linear Optical Excitations of
Acceptor-Substituted Carotenoids

Substituted conjugated molecules have optical
properties that reflect the interplay of the donor-
acceptor strength and the type and the length of the
connecting bridge.1,2,12,13,18,31,259-261 The electronic spec-
tra of a family of unsubstituted, neutral (N(n)) (and
substituted with the strong acceptor polar) P(n)
molecules shown in Figure 4A17,262 were calculated
using the CEO/INDO/S with IDSMA algorithm.89,91,81

Our analysis shows the difficulties in disentangling
the effects of donor acceptor and bridge in the
spectroscopy of molecules with relatively short bridges.
To obtain a clear picture of the optical response of
acceptor-substituted molecules it is instructive to
study the size-dependence of optical properties, start-
ing with very long bridges, where the effects of the
acceptor and the bridge regions can be clearly sepa-
rated. Optical properties of acceptor-substituted mol-
ecules with shorter bridges can then be attributed
to quantum confinement, which is important when
the bridge size becomes comparable to the coherence
length Lc.

We first consider the effect of the acceptor on the
ground state by analyzing the bond-length alterna-
tion (BLA) parameter and relevant charge distribu-
tions. The BLA δlj is defined as the difference
between the single (l2j) and the double (l2j-1) bond
lengths in the j’th repeat unit along the bridge:

The BLA is a signature of the uneven distribution of
the π densities over the bonds (Peierls distortion),
which has a well-established relation to molecular
polarizabilities.260,263-268 Figure 4B displays the BLA
parameter and the variation of the total charge QA
from the acceptor end

where Qacceptor ) 0.69e is the total electronic charge
on the acceptor and qa are the atomic charges. These
calculations illustrate the roles of bridge and bound-
ary (end) effects in electronic structure of conjugated
molecules. The acceptor attracts electronic charge
and attempts to convert the chain structure to

zwitterionic. In response, the π-electronic system
screens the acceptor influence by inducing a positive
charge at the acceptor end. The electrons completely
screen the acceptor over an effective length of about
10 double bonds leading to a saturation of the
ground-state dipole moment at this molecular size.
Other parts of the molecule are unaffected by the
acceptor. δlj and QA deviate again from their bulk
values near the neutral end of the molecule (Figure
4B) due to boundary condition effects imposed by
structure on the right molecular end.

This effect of the acceptor substitution further
strongly affects the absorption spectra:17,81,262,269 The
spectrum of the unsubstituted molecule N(20) is
dominated by a single peak a, whereas in the accep-
tor molecule P(20) this resonance is red shifted and
a second, weaker, peak b appears. These trends may
be accounted for by inspecting the relevant transition
densities. The electronic modes of N molecule (panels
a′ and b′ in Figure 4) are almost symmetric with
respect to the diagonal (êmn ≈ ênm). This means that
there is no preferable direction for the motion of

δlj ) l2j - l2j-1, j ) 1, ..., n (3.1)

QA ) Qacceptor + ∑
a)1

A

qa (3.2)

Figure 4. (A) Structures of the neutral N(n) and polar
P(n) (substituted by the strongest acceptor) carotenoids.
Molecular geometries were optimized using AM1 model492

in Gaussian 98 package.142 Calculations were done for
chain lengths of n ) 5, 10, 20, and 40 double bonds; (B)
Variation of the bond-length alternation (top) and total
charge QA (bottom) along the chain in polar P(40) molecule;
(C) Linear absorption spectra calculated with line width
Γ ) 0.2 eV of the N(20) (dashed lines) and P(20) (solid lines)
molecules; contour plots of electronic modes which domi-
nate the absorption spectra of N(20) and P(20). Reprinted
with permission from ref 81. Copyright 1997 American
Chemical Society.

3182 Chemical Reviews, 2002, Vol. 102, No. 9 Tretiak and Mukamel



electrons (or holes). êa′ is a bulk mode similar to the
bulk transition in PPV (Figure 3(I)) with coherence
size Lc ∼ 12 double bonds.81 The second oscillator êb′
has a nonuniform diagonal spatial distribution, with
three distinct contributions to the dipole moment,
making a weak contribution to the linear absorption.
The lowest feature (a) in P(20) Figure 4) is a charge
transfer mode with diagonal size of Ld ∼ 17 and
coherence size Lc ∼ 12 double bonds,81 completely
localized at the acceptor end. Its dipole moment is
large and localized. This mode carries a strong
oscillator strength in the optical response of small
chains, which saturates in larger molecules (n > 17).
The second mode (b) resembles the bulk mode of the
neutral molecule (compared to a′). Its oscillator-
strength for molecules with J 12 grows linearly with
n. The absorption spectra of small chains are there-
fore dominated by the charge-transfer mode (a)
whereas the bulk mode (b) takes over with increasing
molecular size. The distinct character of these modes
is less apparent in chains shorter than the effective
coherence size of 12 double bonds.81

The optical response of long donor/acceptor substi-
tuted molecules can thus be interpreted by dividing
them into three effective regions: the acceptor (I) and
the donor (III) boundary regions at the molecular
ends, connected by the bridge (middle) region (II).
The absence of electronic delocalization between
these regions implies that the optical properties are
additive and can be described in the same way as
those of molecular aggregates.270,271 Region II has the
same properties as neutral molecule; it only shows
odd order responses which scale linearly with size,
whereas regions I and III have a fixed size deter-
mined by the screening length of the substituents.
The ground and the excited states are zwitterionic.
These effective regions are solely responsible for
even-order optical responses. The odd-order re-
sponses for long chains are dominated by the contri-
bution of region II, which is proportional to the size,81

but regions I and III affect the response as well.
These acceptor substitution effects on the nonlinear

response of carotenoid have been studied extensively.
Experimental investigations17,262 reveal that the sub-
stitution resulted in third-harmonic generation val-
ues up to 35 times higher than in â-carotene which
corresponds to N(11) molecule. Subsequent CI/SOS
quantum-chemical calculations269 rationalized the
origin of this enhancement and assessed the ap-
plicability of simple models to describe the evolution
of the molecular polarizabilities. In particular, this
study shows a steplike increase of the longitudinal
component of the dipole moment with the applied
external field, caused by charge-transfer toward the
acceptor end leading to an enhanced nonlinear re-
sponse.

C. Quantum Confinement and Size Scaling of
Off-Resonant Polarizabilities of Polyenes

Conjugated polymers have large polarizabilities
attributed to the delocalized nature of electronic
excitations. Numerous experimental and theoretical

studies have forged a pretty good understanding of
their electronic and optical characteristics.15,31 Pio-
neering theoretical investigations of NLO properties
of polymers using solid-state physical concepts have
been carried out by André, Champagne, and co-
workers272-276 These investigations utilized the sum
over states273 and the polarization propagator tech-
nique.274,276 A similar study has been done by using
a variational method for the time-dependent wave
function.277,278 Ab initio approach combined CPHF
method has been applied to polyene oligomers of
moderate sizes,34,35 extrapolated to the infinite sys-
tems using the periodic boundary conditions,279,280

and extended into finite frequency off-resonant
regime.280-282 It has been shown that vibrational
contributions to the polarizability may be as impor-
tant as their electronic counterparts.283-289 These
nuclear effects arise from geometry deformations
induced by the external field π-electron delocalization
and polymer nonrigid energy potential surface strongly
enhances the vibrational contribution.

The variation of off-resonant optical polarizabilities
of polyenes with molecular size may be described by
the scaling law ∼nb, n being the number of repeat
units and b is a scaling exponent. In first (R) and
third (γ) order responses the scaling exponents b vary
considerably for short molecules: 1 < bR < 2 and
2 < bγ < 8.10,15,32,33,289-297 For elongated chains, the
exponent b attains the limiting value 1, indicating
that the polarizabilities become extensive properties.
Recent theoretical studies suggest that this sets in
at about 30-50 repeat units. An unusually large
saturation length was reported experimentally in one
case,298 which was then corrected to yield a value of
∼60 repeat units.299)

Static electronic polarizabilities up to seventh order
for polyacetylene oligomers with up to 300 carbon
atoms were computed using the PPP Hamiltonian
combined with the DSMA.89,300 The polarizabilities
are obtained by adding respective contributions from
effective electronic modes calculated in the DSMA
procedure.89,300 These modes manifest themselves
in the response with different effective oscillator
strengths at each order. Typically, higher frequency
modes make more significant contributions to the
higher order responses. The ground state density
matrix Fj (a) as well as the five dominant modes
labeled b-f are depicted in Figure 5 for N ) 30 (top
two rows) and N ) 100 (bottom two rows). As noted
earlier, the delocalization of the off diagonal elements
represents electronic coherence between different
atoms. Figure 5 clearly shows how electronic coher-
ence which is very limited for the almost diagonal Fj
increases very rapidly for the higher modes in the
case of longer oligomer (N ) 100), whereas finite size
(quantum confinement) effects are illustrated for
N ) 30. We note that modes a and b are hardly
affected by reducing the size from 100 to 30. How-
ever, the more delocalized, higher modes, show
significant confinement effects.

This coherence size directly controls the size-
scaling behavior of nonlinear optical response. The
calculated first- (R), third- (γ) and fifth-order (ε) static
polarizabilities of polyacetylene chains with up to 200
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carbon atoms are shown in the Figure 6A. Panel B
shows their scaling exponents. We note that the
variation with size is very rapid at small sizes but b
eventually saturates, and attains the bulk value of
1. In general, higher frequency modes contribute
more to the higher nonlinear response. Since the size
of the mode grows with mode frequency (Figure 5),
the crossover (coherence) size increases for higher
orders nonlinearities (Figure 6A). The scaling and
saturation sizes of static nonlinear polarizabilities in
polyenes and other polyconjugated oligomers have
been studied in detail using the CEO approach.297,238

Simple analytical expressions for size and bond-
length alternation dependence of off-resonant polar-
izabilities were derived297 using a single-oscillator
approximation. The relations between the magnitude
of the saturation size Lc have been investigated for
several families of molecules in ref 238. The size-
scaling behavior of the second-order nonlinear re-
sponse in conjugated oligomers substituted by donor
and acceptor groups will be analyzed in Section
IIID.301,302

D. Origin, Scaling, and Saturation of
Off-Resonant Second Order Polarizabilities in
Donor/Acceptor Polyenes

Donor/bridge/acceptor type molecules are not cen-
trosymmetric and therefore possess even-order non-
linear polarizabilities. Experimental12,13,18,19,303 and
theoretical14,304-310 studies have thoroughly investi-
gated the variation of polarizabilities magnitudes
with donor and acceptor strength, length, and type
of the congugation bridge, and molecular conforma-
tions. A common approach for computing nonlinear
polarizabilities is to use a perturbative expansion
involving a summation over all molecular states. By
restricting the summation to a single low-lying
excited state and assuming that the charge-transfer
transition is unidirectional, Oudar and Chemla311,312

obtained the two-level expression commonly used for
estimating the second-order polarizability

where µgg and µee are the ground and excited-state
dipole moments, µge is the transition dipole, and Ege
is the transition frequency. A superficial look at eq
3.3 suggests a rapid nonlinear scaling with n since
the permanent dipole moments µgg, µee and the
transition dipole µee are expected to grow with n. It
is not clear from eq 3.3 precisely how should â scale
with molecular size. Establishing the precise scaling
law of â and its crossover to the bulk is an important
issue. Experimental studies restricted by synthetic
limitations to chain length of 15-20 repeat units
show 1.4 < bâ < 3.2,14,18,13,12,19,313 whereas calculations
performed with up to 22 repeat units yield 1.5 <
bâ < 2.14,314

Figure 5. Top rows: Contour plots of Fj (a) and the
dominant modes (b-f) that contribute to the responses up
to the seventh order for polyacetylene oligomer with N )
30 carbon atoms. Shown are the absolute values of the
density matrices averaged over four neighboring points to
eliminate fast oscillations and to highlight the long range
behavior. The axes are labeled by the carbon atoms along
the chain. Exciton confinement effects are clearly seen in
panels c, d, e, f. Frequencies of modes b-f are 2.6, 4.0, 4.8,
5.2, and 5.6 eV, respectively. Bottom rows: Same as A but
for a longer chain (N ) 100). Frequencies of b-f modes
are 2.4, 3.9, 4.5, 4.7, and 5.1 eV, respectively. Reprinted
with permission from ref 89. Copyright 1996 Elsevier
Science.

Figure 6. (A) Scaling and saturation of the lowest three
nonvanishing static polarizabilities (R, γ, and ε) of poly-
acetylene chains with size; (B) variation of the scaling
exponents b ≡ d[lnø]]/d[lnN], ø ) R, γ, ε with size for the
curves shown in panel A. Note how the exciton coherence
size increases with the degree of nonlinearity. Reprinted
with permission from ref 89. Copyright 1996 Elsevier
Science.

â ∝ (µee - µgg)
µge

2

Ege
2

(3.3)
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The CEO technique and our study of the linear
response of elongated carotenoids described earlier
provide a microscopic basis for predicting the size-
scaling of â and pinpointing its origin. The calculated
scaling exponents bR, bâ, and bγ of donor/acceptor
substituted polyenes are displayed in Figure 7B.301

As expected, bR and bγ reach the limiting value 1 at
large sizes. bâ, however, is very different and vanishes
at large sizes. This markedly different behavior of
â can be explained by examining the differences
∆F(2) ≡ δFDA

(2) - δFN
(2) between the induced density ma-

trices in the substituted and the neutral molecules
(Figure 7). This difference contributes to â. In com-
plete analogy with the ground state where ∆Fj ≡ ∆Fgg
(Figure 7) defines µgg,301,302 the donor/acceptor influ-
ence is screened by the π electrons and is confined
to a finite section of the bridge with about 15-17
double bonds. For short chains (∆F(2)(9)), the donor
and acceptor communicate directly and significant
electronic coherence then develops between them
since their influence regions overlap spatially. How-
ever, for larger chains, ∆F(2)(30) is block diagonal, and
their effects are clearly separable. This is the reason
â levels off to a constant with bâ ) 0: only the ends
of the molecule contribute to â, whereas the bridge

is identical to that of neutral molecule and does not
contribute to â.301,302

As noted earlier, unlike the present real-space
analysis, the mechanism of saturation of â at large
sizes is highly nontrivial in terms of the molecular
eigenstates (eq 3.3). Since excited states are delocal-
ized, it can be argued that µge

2 ∼ n at large n in the
two-level model.297,300 This is necessary to guarantee
that the linear scaling of the linear off-resonant
polarizability with n: R ∼ fge/Ege

2 ) 2µge
2 /Ege ∼ n,

where fge is the oscillator strength. µgg, µee, and Ege
saturate with molecular size.18,13,309,306 At first glance
we thus expect â ∼ n. This argument fails for the
following reason: The difference (µee - µgg) originates
from charge redistribution upon electronic excitation.
Figure 7 clearly shows that charge transfer which
affects the permanent dipole only occurs in confined
regions at the ends. Since the excited states are
delocalized over the entire molecule, the difference
(µee - µgg) should scale as n-1, which cancels the ∼n
scaling of µge

2 , resulting in an overall constant â,
independent of n. Another way to state this is that
both the ground state (µgg) and the excited-state (µee)
contributions to â scale as n, and the saturation of
â originates from a delicate cancellation of these
two ∼n terms. It is interesting to note that similar
cancellations have been observed in γ as well; indi-
vidual contributions which scale as n2 interfere and
almost cancel, resulting in the overall ∼n scal-
ing.31,14,15

Defining and predicting the saturation size of
optical properties is a key factor in developing
synthetic strategies for optical materials. The two-
dimensional CEO plots provide a highly intuitive yet
quantitative tool for addressing this problem: the
density matrix shows that the influence of the donor
or the acceptor is limited to a few double bonds in
its vicinity; the size of these coherence regions
depends on the donor and the acceptor strength.
Direct donor-to-acceptor communication and charge
transfer do occur at short chains. However, when the
molecular size is larger than the coherence size the
donor and the acceptor are decoupled and their
effects are additive; â itself (rather than â/n) then
becomes size-independent.

E. Localized and Delocalized Electronic
Excitations in Bacteriochlorophylls

Optical properties of chlorophylls and porphyrins
have drawn considerable attention315-326 because of
their fundamental and biological relevance. We ap-
plied the CEO/INDO/S approach to study the elec-
tronic excitations of bacteriochlorophyll-a (Bchl-
a)93,94,327 from LH2 complex of photosynthetic bacteria
Rhodospirillum molischianum (âB850).328,318 The cal-
culated properties of individual Bchl-a, both isolated
and in a dielectric medium, are summarized in Table
1. This table reveals the significant impact of solva-
tion on the linear absorption spectrum, reflecting the
need for properly incorporating the dielectric envi-
ronment in accurate computations.94

To trace the origin of the various resonances we
had examined the corresponding collective electronic

Figure 7. (A) Structures of the neutral N(n) and donor/
acceptor DA(n) substituted molecules. Molecular geom-
etries were optimized using AM1 model492 in Gaussian 98
package.142 Calculations were performed for bridges with
n ) 5, 10, 15, 20, 30, 40 double bonds; (B) Variation of the
scaling exponents bø ≡ d[lnø]]/d[lnn], ø ) R, â, γ with size
for DA(n). At large sizes bR and bγ tend to 1 whereas bâ
approaches 0. These reflect the saturation of R/n, γ/n, and
â; Contour plots of the ground state difference matrices
∆Fj ) FjDA - FjN for n ) 9, 15, and 30 shown for the bridge
part of the matrix. ∆F is magnified as indicated in each
panel to use the same color code. Axes are labeled by the
bridge carbon atoms with atom 1 on the donor side and
atom 2n on the acceptor side. The second row displays the
difference matrices to the second orders in the field ∆F(2).
Reprinted with permission from ref 301. Copyright 1998
Elsevier Science.
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modes. Panel F in Figure 8 shows that the ground-
state density matrix Fj of Bchl-a is essentially tri-
diagonal, simply reflecting the nearest-neighbor chem-
ical bonding in the ground state. The charge-

distribution along the diagonal is not uniform: nitro-
gen and oxygen atoms (blue dots on the diagonal)
have an excess electronic charge. Panel Qy displays
the electronic mode of the lowest absorption peak Qy.
This mode is delocalized across the entire molecule
and is dominated by carbons 2-8 and 15-20. The
coherences of the Qx mode are distributed more
uniformly across the molecule. The Soret Bx and By
modes are very similar to the corresponding Qx and
Qy transitions. Extensive delocalization and almost
perfect symmetry with respect to the diagonal are
common features of all Q and B modes. This reflects
the absence of preferable direction of motion for holes
or electrons. The Mg atom and both CdO groups do
not participate in these excitations. The remaining
excitations have distinct charge-transfer character
that can be clearly identified by real-space analysis
(see Section IIC and Figure 2). The Tx modes heavily
involve Mg and CdO atoms. Panel Tx1 shows that
the electron is transferred from the porphyrin to
Mg(1) upon Tx1 excitation: the hole is delocalized
(x-axis) and the electron is localized on the Mg (y-
axis). This transition is forbidden for planar geometry
and its intensity grows as the Mg atom is displaced
out of the molecular plane. Panel Tx2 shows that the
next Tx mode represents electron-transfer from the
O12 oxygen mostly to C11 and to the rest of the
molecule. As indicated earlier, oxygen is an electron
acceptor, which attracts extra electronic charge in the
ground state. In the Tx2 excited state the electron
gains energy and becomes more “loose”. Similarly, the
Tx3 mode involves electron transfer from O25 to C24,
with less electronic delocalization compared to Tx2.
Finally, the N mode is localized on the two vertical
strips and describes electron transfer from the pyr-
roles to the entire molecule. The Q, B, N, and Tx
electronic modes are very similar to the correspond-
ing transitions in Mg and free-base porphins.329

This analysis helps to predict energy transfer
pathways and rates in light-harvesting complexes
(Section IVD). It may further be used for rationalizing
spectroscopic trends in porphyrin-base electronic
materials in a search for an optimal chemical struc-
ture for optical limiting applications.24,330,331

IV. Optical Response of Chromophore
Aggregates

Intermolecular interactions and bonding in chro-
mophore aggregates may be directly probed by optical
spectroscopy. Organic molecular crystals are typical
examples of molecular assemblies whose electronic
structure, polarization effects, and transport phe-
nomena have been investigated for decades.270,271,332

High-temperature superconductivity and lasing have
been observed in high purity acene organic crys-
tals.25,333,334 In addition, extensive experimental and
theoretical effort has been devoted to the studies of
less ordered systems such as clusters in supersonic
beams,335-339 J-aggregates of cyanine dyes,8 supramo-
lecular structures,4,340,341 and biological complexes
(photosynthetic antennae and reaction centers).315-324

Small aggregates may be treated as supermolecules
employing standard quantum chemistry methods to
calculate their electronic structure.181,342-347 However,

Table 1. Calculated and Experimental Excitation
Energies of Bchl-aa

state CEO (ic) CEO (dm) experiment

Qy 1.20 (1.441) 1.61 (1.190) 1.6 (1.27,d 1.33e)
Qx 2.13 (0.194) 2.26 (0.473) 2.16 (0.685)d

Bx 3.12 (1.385) 3.19 (1.194) 3.17(∼1.11)c

Tx1 3.40 (0) 2.96 (0.073)
Tx2 3.51 (0.068) 3.54 (0.095)
Tx3 3.53 (0.117) 3.68 (0.355)
By 3.90 (1.152) 3.42 (0.883) 3.47 (∼0.96)c

N 4.21 (0.094) 4.05 (0.867)
a CEO calculations were carried out for an isolated complex

(ic) (ref 93) and in a dielectric medium (dm) with ε ) 9. The
experimental transition energies correspond to Bchl-a mono-
mers in ethyl ether solution (ref 494). Energies are in eV.
Transition dipole moments (in eÅ) are given in parentheses.
Reprinted with permission from ref 94. Copyright 2000
American Chemical Society. c Ref 184. d Ref 495. e Ref 390.f Ref
496. g Ref 497.

Figure 8. (A) Geometry and atom labeling of Bchl-a
obtained from crystal structures of LH2 complex of Rs.
molischianum328 with added hydrogen atoms. Geometries
of hydrogen atoms of the substructures were optimized by
using the AM1 method.492 (B) Calculated linear absorption
spectrum of Bchl-a. Contour plots the electronic modes
which dominate the optical absorption of Bchl-a. The axis
labels represent the individual atoms as labeled in panel
A. The panels indicate the electronic mode according to
panel B. The color code is given in the top row. Mode
frequencies are given in Table 1. Reprinted with permission
from ref 93. Copyright 2000 American Chemical Society.
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the ability to relate the electronic states and spectra
of aggregates to those of their monomeric building
blocks92,93,95,348 should provide a better microscopic
insight into the nature of their electronic excitations
and to predict qualitative features of complex large
systems using simple, readily available information.
Localization of optical excitations in certain regions
of a molecule constitutes such a selection rule since
it allows us to effectively break the molecule into a
subset of coupled chromophores.

The problem is simplified considerably for chro-
mophores, spatially well-separated, whose interac-
tions are purely Coulombic (electron-exchange is
negligible).270,271 Each chromophore then retains its
own electrons and the aggregate may be described
using the Frenkel exciton Hamiltonian for an as-
sembly of two-level systems:349-352

Here Bn (Bn
†) is the annihilation (creation) operator

of an excitation localized on the nth chromophore,
and Ωn represents the transition energy from the
ground state to the excited state. They satisfy the
Pauli commutation rules [Bn, Bm

† ] ) δnm(1 - Bn
†Bn).

The interaction between chromophores is described
by the hopping parameters Jnm. Equation 3.1 is the
simplest form of an exciton Hamiltonian. Other terms
including high products of B, B† can generally be
included. For spatially well-separated chromophores,
this interaction is purely electrostatic.353-356,181 How-
ever, at closer proximity, intermolecular electron
exchange processes become allowed,92,93,181,251,342 mak-
ing additional contributions to the chromophore
couplings. These distinct Coulombic and electron
exchange interactions are known as the Förster and
the Dexter couplings, respectively. Calculations of
optical excitations become considerably more complex
when the electronic states are delocalized among the
chromophores. This strong intermolecular interaction
leads to formation of dynamic excited-state complexes
(excimers and exciplexes) which have clear spectro-
scopic signatures.357,358 The interplay between the
Förster and the Dexter interactions have been ex-
tensively studies theoretically using “supermolecular”
approach.92,93,97,251,342 For example, quantum-chemical
studies of co-facial PPV chains251,359,95 reveal the
dramatic effect of intermolecular electron exchange
processes onto aggregate electronic structure at upon
bringing monomer chains into close proximity (3-4
Å). A good review on intermolecular interactions in
conjugated materials has been published recently.181

The real space CEO analysis provides a practical
scheme for dissecting large molecular aggregates into
a set of weakly interacting chromophores which do
not necessary represent separate molecules.90 The
electronic couplings can be obtained from these
computations without invoking the point-dipole93,316,360

or similar approximations.

A. Excitonic Couplings and Electronic Coherence
in Bridged Naphthalene Dimers

We first illustrate the CEO description of the
molecular aggregates by analyzing the absorption

spectra of naphthalene and a family of naphthalene-
bridge-naphthalene systems DN-2, DN-4, and DN-6
shown in Figure 9A.361,362 These molecules are es-
sentially dimers where pairs of naphthalene chro-
mophores are held at fixed distances and orientations
by a rigid polynorbornyl-type bridge of variable
length (two, four, or six σ bonds, respectively).
Naphthalene is the smallest molecule in acene fam-
ily. The UV spectra and radiative decay rates of these
dimers have been measured by Scholes and co-
workers,343,344,361,362 and interpreted using a simple
exciton model,350,363 whereby each excited state of the
monomer generates two states in the dimer. The
interaction between two monomers results in a
Davydov splitting of the two dimer states.349 The
estimated splitting using the exciton model was
found to be very small compared with the observed
value. This discrepancy was attributed to the through-
bond interaction mechanism.343,344,361,362 The exciton
model350 is based on the assumption that the interac-
tion between chromophores is purely electrostatic and
could be approximated by dipole-dipole coupling. All

H ) ∑
n

ΩnBn
†Bn + ∑

n*m
JnmBm

† Bn (4.1)

Figure 9. (A) Structures and atom labeling of naphthalene
and bridged naphthalene dimer molecules. Molecular
geometries were optimized using AM1 model492 in Gaussian
98 package;142 (B) UV absorption spectra of the DN-n
series. Top: experiment.361 Bottom: linear absorption
profile calculated with line width Γν ) 0.2eV. Computed
absorption spectra are shown in arbitrary units; Contour
plots of electronic modes which dominate the absorption
spectra of DN-n. The axis labels represent the individual
carbon atoms as labeled in the molecular templates (A).
Reprinted with permission from ref 342. Copyright 1999
National Academy of Sciences, U.S.A.
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interchromophores charge-transfer processes are ne-
glected.

The CEO/INDO/S approach and Lanczos algorithm
were applied to compute the excited-state electronic
structure of DN-n molecules.342 Figure 9B compares
the calculated UV spectra with low-resolution ex-
perimental absorption of N-2 and DN-n. The com-
puted trends are consistent with experiment.342 The
dimeric splitting resulting from the major naphtha-
lene absorption band 1Ag f 21B3u electronic transition
of 5.62 eV is clearly observed. With decreasing the
bridge length (from DN-6 to DN-2) the coupling
between naphthalenes shown in the molecular tem-
plates becomes larger and the two primary peaks get
far apart. We note that the magnitude of the coupling
increases abruptly for molecule with the shortest
bridge (DN-2) compared to the other two dimers.

This behavior may be easily rationalized by exam-
ining the relevant transition densities corresponding
to one component of the Davydov’s pair (usually the
other component is very similar to the first.342) The
mode of N-2 molecule (naphthalene with the bridge)
shows that the excited electron-hole pair is delocal-
ized over the naphthalene. As expected, the bridge
does not participate in the optical excitation since it
has no π-bonding network. Panels DN6 show one of
the dimer state corresponding to the mode of N-2
where the corners represent the monomers. These are
separated by the large bridge, and there is no off-
diagonal coherences between monomers. The dimer
states are therefore symmetric and antisymmetric
combinations of the monomers excited states wave
functions (compare to N-2 mode). The interaction
between monomers is purely electrostatic and rela-
tively weak, as can be seen from the absence of an
off-diagonal block between them. The Frenkel exciton
model (eq 4.1) is fully justified for this system.

Compared to DN-6, DN-4 shows a very weak long-
range electronic coherence between monomers (off-
diagonal blocks of the plot). The chromophores are
closer and the dipole-dipole interaction is much
stronger, leading to a larger splitting. In addition,
weak exchange (Dexter) interaction starts to show
up. The exciton model is therefore only marginally
applicable to DN-4. Finally, DN-2 is drastically
different from the other dimers. Bringing monomers
to a close proximity results in large off-diagonal
elements (coherences) which is a signature of elec-
tronic delocalization between chromophores (i.e.,
charge separation processes where the electron and
hole reside on different monomers become allowed).
This leads to a dramatic increase of the splitting and
the exciton model completely breaks down for DN-2.
These results agree well with experiments and
computations of Scholes and co-workers:343,344,361,362

the exciton model is adequate for excitations of DN-
6, DN-4 dimers but is not suitable for DN-2 molecule
where electron exchange “through-bond interaction”
is dominant. The CEO real-space analysis which
allows the separation of electrostatic and exchange
interactions in molecular aggregates can therefore be
used to establish when the Frenkel exciton model is
applicable, and provides a simple algorithm for
computing its parameters.

B. Electronic Excitations in Stilbenoid
Aggregates

We next examine a more complex case: molecules
with a significant through-space π-interaction.92,359,364

A few members of a family of recently synthesized
stilbenoid chromophore dimers with rigid geometry
are shown in Figure 10. For reference, we have
further considered the monomer units 1c, 2c, as well
as [2,2]paracyclophane Pc, which is the central piece
of all dimers studied.348,365 These molecules with rigid
structures are representative of chromophore ag-
gregates in solids353-356 and can be studied in the
absence of interactions with other chromophores.
They provide insights into chromophore-chromophore
interactions which significantly affect the perfor-
mance of organic optoelectronic materials.249,366-368

The CEO/INDO/S calculations combined with the
IDSMA algorithm were carried out using geometries
obtained from crystallographic X-ray diffraction.92,359

Experimental absorption and fluorescence spectra of

Figure 10. Structures and atom labeling of [2,2]paracy-
clophane (Pc), stilbenoid monomers (1c, 2c) and dimers (1b,
2b). Geometries were obtained from crystal structure
data;493 calculated (solid lines) and experimental (dashed
lines) absorption spectra and experimental (dotted lines)
fluorescence spectra of molecular dimers are shown in
arbitrary units. Empirical line width Γν ) 0.2eV has been
used to compute absorption profiles; contour plots of
electronic modes which dominate the absorption spectra
of 1b and 2b. The axis labels represent the individual
carbon atoms as labeled in the molecular templates.
Reprinted with permission from ref 92. Copyright 1998
American Chemical Society.
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1b and 2b92 are displayed in Figure 10 (dashed and
dotted lines). The calculated spectra (solid lines)
reproduce the main features of the experiment.

To trace the origin of the various peaks, we
examined the modes corresponding to these electronic
excitations. The lowest-frequency electronic mode IA
of 1b and 2b is essentially localized on the paracy-
clophane; it represents charge delocalization between
monomers and has a vanishing oscillator strength.
The optical spectrum of paracyclophane has similar
transitions. Modes 1b(IIA) and 2b(IIA) resemble bulk
modes of the corresponding monomers 1c and 2c
(diagonal blocks). 1b(IIA) shows stronger electronic
coherences between chromophores (off-diagonal blocks)
compared with 2b(IIA). Thus charge delocalization
is stronger for the shorter molecule 1b compared with
2b because in the former the electron-hole pair
“spends more time” on the Pc unit, which promotes
charge delocalization. The structures of 1b(IIB) and
2b(IIB) are similar to 1b(IIA) and 2b(IIB), respec-
tively.92 The coupling of the monomeric modes 1c(II)
thus leads to a Davydov-like splitting resulting in
modes IIA and IIB of the dimers.349 This splitting
reflects the exchange-dominated interaction strength
between monomers. In contrast with the naphthalene
dimers, the Frenkel exciton model is not applicable
to these systems.

These electronic modes may be used to predict the
observed trends of the experimental fluorescence
spectra (dotted curves in Figure 10). Both monomer
spectra show distinct vibronic structure and have a
similar Stokes shift.369,370 The fluorescence spectrum
of 2b has virtually identical shape to the monomer
(2c). In marked contrast, the spectrum of 1b is broad
and featureless, shows no vibronic structure, and its
shape resembles the fluorescence of Pc. These obser-
vations can be explained by assuming that in the
short dimer (1b) the optically excited IIA state relaxes
to the lower lying IA and IB states. The fluorescence
originates from states IA and IB which are red-
shifted by 0.93 and 0.8 eV with respect to IIA. The
large Stokes shift is thus electronic in origin. In
contrast, in the longer dimer (2b), the state IIA is
significantly red-shifted since it is delocalized, whereas
the states IA and IB do not shift. The separation
between II and IA(IB) in the long dimer is only about
0.2 eV, and the emission originates primarily from
the initially excited state. This picture is supported
by calculations of the radiative decay rates of these
molecules92 which compare well with experiment. The
CEO modes thus account for all observed trends in
absorption spectra, fluorescence Stokes shift, and
radiative lifetimes, and establish a clear connection
between the optical response of aggregates and the
monomers.

C. Localized Electronic Excitations in
Phenylacetylene Dendrimers

Dendrimeric molecules with branched tree-like
structures are an interesting novel class of polymers
with well controlled structure and size371-380 (Figure
11). Theoretical interest in these “Cayley trees” (also
known as Bethe lattices) arises from their peculiar
dimensionality: the connectivity between different

sites is one-dimensional (there is only one path to go
between two points). However, the number of atoms
grows exponentially with generation, as in infinite-
dimensional systems. This leads to unusual transport
and optical properties. The dynamics of photophysical
(electronic and vibrational energy transfer) as well
as photochemical processes has been demonstrated
to be strongly affected by geometric confinement.
Calculating the electronic excitations of these sys-
tems, analyzing their nature, and predicting their
scaling with molecular size is an open challenge.

In this section, we discuss these interesting sys-
tems and show how they can be dissected into
coupled chromophores. Below we present CEO analy-
sis of the absorption spectra of two families of
phenylacetylene dendrimers (Figure 12 A and B)90

made out of phenylacetylene oligomer segments
connected through para- or meta-substitutions of the
phenyl rings, leading to linear or zigzag chains,
respectively. These macromolecules have been sug-
gested as artificial photonic antenna.381-384 The con-
struction of artificial light harvesting antennae which
mimic the photosynthetic biological complexes has
been a long standing goal. Antennae such as family
B have an energy gradient that favors the migration
of energy toward the center where a reactive site can
be placed. The absorption spectra of family A which
has the same segment (linear unit) length in the
various generations are essentially unchanged with
molecular size. Family B (Figure 12) has a varying
segment length that decreases toward the periphery.
Here the absorption spectra (dashed lines in Figure
12D) show new red-shifted features as the molecular
size is increased. The CEO analysis90 shows how
these trends arise naturally from the localized elec-
tronic excitations in these systems. It is difficult to
anticipate this localization by inspecting the molec-
ular orbitals, since the system is conjugated and the
orbitals are delocalized. Nevertheless, the electron-
hole pairs which contribute to the elementary optical
collective excitations are well localized.

Let us examine the linear (para-substituted) mol-
ecules (P-series) with n ) 1, 2, 3 repeat units (triple
bonds) and the M7 molecule which consists of linear

Figure 11. The generations (shown by different colors)
in the extended family of phenylacetylene dendrimers have
a varying linear segment length; their absorption frequency
is therefore blue-shifted for higher generations.90
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P1, P2, P3 segments connected at the meta-position
with overall n ) 7 repeat units and represents a
branch of the dendrimers (see Figure 12C).90 The
calculated linear absorption spectra of the P-oligo-
mers have a single low-lying absorption peak (the
band-gap transition (a)) which is significantly red-
shifted with increasing chain length, similar to peak
I of PPV oligomers (Figure 3(I)). The spectrum of M7
is markedly different; the single (a) line is split into
three low-frequency transitions (a1, a2, and a3) which
have the same frequencies as the band-gap transi-
tions of its building linear blocks: the P1, P2, and
P3 oligomers.

The corresponding CEO modes are displayed in
Figure 12. The top row of color plots shows the lowest
frequency mode (a) of the para-oligomers. P1(a)
centered at the triple bond shows maximum coher-
ences and is delocalized over the entire molecule. The

mode clearly shows that meta-carbons 2, 3, 12, and
13 have vanishing electronic coherences with other
carbon atoms. This is shown by the “ring” around the
plot with small coherences. Analogous patterns can
be seen in mode (a) of longer linear oligomers P2, and
P3.90 The mode saturates with size and is no longer
confined by the molecular ends. These plots clearly
illustrate the two characteristic length-scales corre-
sponding to the variation of the density matrix along
the “antidiagonal” Lc and the “diagonal” directions
Ld. We found that the coherence size is 5 repeat units
similar to that in PPV oligomers (Figure 3). The
boundary meta-atoms have vanishing coherences in
all P-oligomers.

The bottom row of color plots in Figure 12 displays
the electronic modes of M7. Mode (a3) is localized at
the P3 linear segment of M7 and is virtually identical
to mode P3 (a). Similarly, M7(a2) and M7(a1) re-
semble P2(a) and P1(a), respectively. The absence of
coherence across meta-substitutions shown in this
figure is remarkable; the optical excitations are
clearly confined to the various segments. meta-
conjugation makes a clear barrier for excitonic motion
whereas para-conjugation is transparent to electronic
coherences. This difference does not show up in the
ground state, which is very similar for P7 and M7.

Meta-substituents are known to be much less
effective in changing reaction rates compared with
their para-counterparts.2,3 This can be understood
using resonant structures commonly used in organic
chemistry which show that charges injected into the
system by an nucleophilic or an electrophilic sub-
stituent are delocalized only at the ortho- and para-
positions. The CEO modes establish the same trend
for electron-hole pairs created by light and provide
a direct link between spectroscopy and the well-
established Hammet rules for chemical reactivity.385

The lack of electronic coherence across meta-
substitutions suggests that we can describe the
optical excitations of dendrimers by dividing them
into chromophores with purely Coulombic (no ex-
change) interactions. In zero-order, we can neglect
the interactions among chromophores altogether; the
meta-conjugated dendrimer behaves as a collection
of its linear para-conjugated segments which interact
with light independently. We modeled the absorption
spectra of family A as a collection of P1 chromo-
phores. The spectra thus only show a single low
frequency peak. The experimental and the modeled
spectra of D-4 and D-10 members of family A are
displayed in Figure 12D. The spectra of other gen-
erations are very similar.383 The absorption spectra
of family B were calculated similarly by simply
adding the spectra of its segments. The resulting
calculated and experimental spectra displayed in
Figure 12 show that this procedure can reproduce the
experimental band edge red-shift trend (see Figure
12) as well as the relative peak intensities in these
macromolecules. Subsequent CEO calculations of
couplings among chromophores generated an ef-
fective Frenkel exciton Hamiltonian which was
then used to model the one and two exciton spec-
tra.237,360,386,387

Figure 12. The compact dendrimers (A) are made of the
same linear building block P1. The extended dendrimers
(B) have a varying linear segment length which decreases
for higher generations. (C) Structures and atom labeling
of the linear para-oligomers Pn with n ) 1, 2, 3 repeat units
(triple bonds), and the M7 oligomer made of the P1, P2,
P3 units conjugated at meta-position. (D) Calculated (solid
lines) and experimental (dashed lines) absorption spectra
of the dendrimers. Empirical line width Γν ) 0.1 eV has
been used to compute absorption profiles. Molecular ge-
ometries restricted to planar structures to avoid twisting
around the tripple bonds were optimized using AM1
model492 in Gaussian 98 package;142 contour plots of the
electronic modes which dominate the absorption spectra
of the oligomers shown in panel C. The axes represent the
carbon atoms. The spectrum of M7 is a sum of P1 + P2 +
P3 spectra. Reprinted with permission from ref 90. Copy-
right 1998 American Chemical Society.
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D. Exciton-Coupling for the LH2 Antenna
Complex of Purple Bacteria

The primary processes of photosynthesis, the cap-
ture of sunlight, and its subsequent conversion into
chemical energy, constitute the very basis of all life.6,7

The photosynthetic unit (PSU) of purple bacteria is
the most studied and the best characterized among
the known photosynthetic systems.315-322 The 2.5 Å
resolution structure of the Rs. molischianum LH2
complex328 shows 24 bacteriochlorophyll-a (Bchl-a)
monomers arranged in two rings: nine weakly coupled
molecules form the outer ring which is responsible
for the higher energetic B800 band, while 18 strongly
interacting Bchl-a of the inner ring form the lower
energetic B850 band. A circle of eight carotenoids
bridges the B850 and B800 rings (see Figure 13). This
high circular symmetry simplifies the computation
of intermolecular interaction parameters. Numerous
spectroscopic optical measurements which probe for
the organization and functionality of the PSU were
carried out. Energy-migration in the antenna com-
plexes depends primarily on electronic coupling
between the donor and acceptor chromophores.315-319

The electronic couplings between chromophores are
key factors in determining the rates of energy trans-
fer for weakly coupled B800-B800 and B800-B850
molecules. Energy transfer may be described388,316 by

the Förster incoherent hopping mechanism,389 where
the transfer rate (in ps-1) is given by390,316

Here J is the donor-acceptor electronic coupling (in
cm-1), and Θ is the overlap integral between donor
fluorescence and acceptor absorption line shapes each
normalized to a unit area on the cm-1 scale. On the
other hand, B850-B850 couplings are stronger,
exceeding the energetic disorder, and the molecular
exciton picture needs to be used for the description
of energy migration in the upper B850 ring.391,392 A
point dipole approximation (PDA) assumes that the
chromophore sizes are small compared to their
separation and the coupling is then given by the
interaction between donor and acceptor transition
dipole moments. The PDA which is routinely used
for evaluating coupling constants does not hold for
calculations of J between closely lying chromophores
such as in the LH2 system since the chromophore
sizes are not small compared to their separation.
More accurate computational techniques have been
developed.388,393-397

The CEO/INDO/S approach was applied toward the
study of the electronic excitations of Bchl-a and
carotenoid aggregates of LH2 complex of Rs. molis-
chianum.93,94,327 The electronic spectra of carotenoids
and Bchl were analyzed in Sections IIIB and IIIE,
respectively. Below we investigate the relevant elec-
tronic modes of the Bchl-a dimers, study the effects
of aggregation in the LH2 complex, and compute
interchromophore couplings. Figure 14A displays the
RâB850 heterodimer (intrasubunit) with atom label-
ing over â B850 first then over R B850, following the
pattern of Figure 8A. The computed oscillator
strengths fν are plotted vs transition frequencies Ων
in Figure 14B. The figure shows that each monomer
peak splits into two transitions in the dimer spectra
(e.g., Qy f Qy - 1, Qy - 2) showing J-type dimeriza-
tions.270,271

The ground-state density matrix of RâB850 F is
simply the sum of the monomeric ground states
(compare to panel F in Figure 8), and both Bchls-a
are clearly seen. The off-diagonal block between
chromophores vanishes. Panels Qy1 and Qy2 show a
pair of states corresponding to the Qy mode. At the
corners, we see the monomers which are separated
by ∼9.2 Å Mg-Mg (3.7 Å between the closest atoms).
The absence of off-diagonal coherences between Bchls
implies that the interaction between chromophores
is purely electrostatic, making the Frenkel exciton
model applicable.92,342,386 The 816 cm-1 splitting which
is a measure of electronic coupling between chro-
mophores provides the necessary information for
constructing an effective Hamiltonian.360,386 Com-
pared with Qy, the Qx interaction is weak since the
magnitude of Qx transition dipole is very small. On
the other hand, the strong transition dipoles of Bx
result in the large coupling. Modes CT1 and CT2 are
completely different from the Q and B dimer states.
They are delocalized over the off-diagonal regions,
reflecting the electronic coherence between chro-
mophores, and have no intramonomer contributions
(diagonal regions). The hole created by CT1 excitation

Figure 13. Top and side view of pigments in the light
harvesting complex 2 (LH2) of Rs. molischianum. The
aggregate is made of the upper ring of 16 Bchls-a (blue)
paired in 8 Râ heterodimers or intrasubunits (B850 mol-
ecules), lower ring of 8 Bchl-a (red) (B800 molecules), and
ring of 8 lycopenes (carotenoids) (green). Reprinted with
permission from ref 94. Copyright 2000 American Chemical
Society.

k ) 1.18J2Θ (4.2)
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is localized on RB850 (x-axis), whereas the electron
is transferred to âB850 (y-axis). On the other hand,
state CT2 describes electron transfer from â to R.
Thus, CT1 and CT2 correspond to intermolecular
charge-transfer excitations. Even though the CT
modes are essentially forbidden in linear absorption,
they show up in nonlinear optical studies of these
aggregates (e.g., electroabsorption).398 The electronic
excitations of other Bchls dimers and Bchl-carotenoid
pairs have been similarly analyzed.93,94

Two techniques have been employed for calculating
the electronic couplings: a spectroscopic procedure
that is based on computing the Davydov’s splitting
in the dimer spectrum,93,327 and a Coulombic method
that computes the electrostatic interactions between
transition densities of individual pigments.93,356 Since
the former takes both Coulomb and exchange inter-
actions into account whereas the latter only incor-
porates the Coulomb interactions, comparison of the
results allows the separation electrostatic (Förster)
and electron exchange (Dexter) contributions to in-
terchromophore couplings. Examination of the com-
puted couplings93,94,327 shows that it is essential to
take into account dielectric medium effects in order
to reproduce experimental transition dipoles of the

chromophores (see Table 1) and intermolecular cou-
plings. In general, protein environment screens in-
teraction and reduces couplings up to 30%.94 Dexter
contributions account for approximately 10-15% of
the interaction between nearest neighbor Bchls-a in
the upper B850 ring and is negligible among all other
pigments.

The calculated couplings could be immediately
employed to estimate intermolecular Förster energy
transfer time scales389 in LH2 complex. Estimates of
spectral overlaps in B800-B800, B800-B850, and
Lyc-Bchl are available.390,388 Transfer rates computed
by substituting the calculated electronic couplings
and spectral overlaps into eq 4.2 are summarized in
Figure 15. The Bchl-Bchl time scales agree well with
experiment, and the intermolecular Car-Bchl transfer
rate from 1Bu is found to be comparable to the
1Bu - 2Ag internal conversion rate.

V. Discussion

The highly polarizable π-electron system of conju-
gated molecules forms the basis for their unique
electronic and photophysical properties,399 which are
utilized in numerous biological phenomena and make
them an important material for technology. The use
of conjugated molecules for technological applications
is rapidly becoming reality and organic-based devices
may compete with traditional semiconductor and
liquid crystal based approaches soon. Electronic
phenomena traditionally studied in inorganic (semi-
conductor and strongly correlated) matter have been
currently observed in high-quality organic crystals,
including fractional quantum hall effect,333,400 solid-
state injection lasing,25 high-temperature super-
conductivity334,401-403 and Josephson effect.404,405 The
possibility to make a transistor based on molecular
scale has been recently demonstrated,406 which may
lead to cheaper, faster, and much smaller computer
chips, beyond the semiconductor limits.407 The mo-
lecular electronics is a growing research field.408-413

Figure 14. (A) Structure of the Râ B850 dimer. (B)
Calculated linear absorption spectrum of Râ B850 dimer.
Contour plots the electronic modes which dominate the
optical absorption of B850 dimer. The axis labels represent
the individual atoms. Atoms of each monomer are labeled
according to panel A of Figure 8. The panels indicate the
electronic mode according to panel B. Reprinted with
permission from ref 93. Copyright 2000 American Chemical
Society.

Figure 15. Electronic energy levels, major excitation
funneling pathways, and their calculated transfer rates in
LH2 of Rs. molischianum. Internal conversion is repre-
sented by dashed arrows whereas interpigment energy
flows are shown by solid arrows. Wavy arrows point to the
light-harvesting states. Reprinted with permission from ref
94. Copyright 2000 American Chemical Society.
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Numerous high performance photonic devices fabri-
cated from organic polymers and molecular crystals
have been made,20,21 including light emitting diodes
(LEDs)21,414-419 and electrochemical cells,420 display
panels,421-423 photovoltaic cells,424-426 photodetec-
tors,427-429 transistors,430-432 light-emitting field-effect
transistors,26,433,434 biosensors,435 imaging devices,436,437

and solid-state lasers.22,25,27,438,439 Organic photonic
devices rely on the recombination of electrons and
holes photogenerated or injected at the contact and
a thorough understanding of the photogenera-
tion440-445 and charge transport processes248,446 is
necessary to improve operation of these devices.
Conjugated molecules are promising for nonlinear
optical applications as well.14,15,31,447,448 Adding an
electron-withdrawing and an electron-donating group
enhances the nonlinear optical response even fur-
ther.10,12-14,18,19,303,308,309,449,450 Understanding the mech-
anisms leading to dramatic changes in optical polar-
izabilities with increasing chain length and donor/
acceptor strength, and the limiting factors of these
enhancements are the key for a rational design
strategy of molecules possessing large optical polar-
izabilities.266,451

Conjugated molecules form important groups of
natural pigments and play the major roles in funda-
mental biological phenomena. For example, caro-
tenoids are found in all families of vegetables and
animal kingdoms.452-454 Among the innumerable
biological molecules, this class has numerous bio-
physical applications. Carotenoids play important
roles in pharmaceutical and food technology as well.
In the photosynthetic apparatus, these molecules
appear in antenna complexes that absorb the light
and transfer excitations to the reaction centers.454-456

In addition, they serve as antioxidants by quenching
the chlorophyll triplet via energy transfer and pre-
venting the formation of singlet oxygen. The photo-
isomerization of the closely related retinoids has
various physiological functions (e.g., the primary
process of vision455,457 and proton pump). Chlorophylls
and porphyrins are the other primary pigments of
photosynthesis (Section IVD).6,7 In addition, metallo-
phthalocyanine complexes and porphyrin derivatives
are reverse saturable absorbers,24,330,331 efficient light-
emitters,458 and nonlinear materials.459-462 These
molecules exhibit improved excited-state absorption
and optical limiting, have a large intersystem cross-
ing rate indicated by transmittance and excited-state
lifetime measurements. This makes these materials
attractive for technology as well.

The study of conjugated molecules has become a
research frontier that involves many challenges for
theory, experiment, and synthesis. Exploring the
electronic structure and spectroscopic properties of
the molecular systems constitute an important part
of the ongoing global progress. The theoretical and
computational approaches such as CEO, which pro-
vide means to analyze electronic properties, establish
molecular structure-functionality relations, and pre-
dict the trends, are useful for this research.

The CEO approach offers numerous computational
advantages: instead of arbitrary truncation of mo-

lecular orbitals, the fast Krylov space algorithms
(Lanczos, Davidson, and IDSMA) take into account
all active space included in the TDHF approximation,
making such calculations straightforward. Yet, the
computational cost per excited state is very low and
usually does not exceed that of the ground state. This
makes excited-state structure calculations possible
whenever SCF ground state computations are avail-
able. The electronic density matrix associated with
the nonlinear optical response may be easily obtained
by summing over the electronic oscillators coupled
by relevant nonlinear dipole (see Section F). These
oscillators may be grouped into a few effective
degrees of freedom using the DSMA algorithm which
expresses the molecular optical response in terms of
dominant collective variables. Even though the sum-
over-states method allows the calculation of any
optical response including to strong fields once the
eigenstates are known, the SOS approach rapidly
becomes more complex with molecular size, since
both tasks of calculating the eigenstates and per-
forming the necessary summations over them are
very expensive for large systems. The CEO approach
carries less information but at considerably lower
cost, making it readily applicable to the interesting
crossover region between small molecules and bulk.
The power of the oscillator picture are particularly
apparent in the calculation of nonlinear optical
properties.87,151,300,301 Interference effects in the SOS
approach result in a cancellation of large positive
and negative contributions to optical susceptibili-
ties,15,32,33,76,463 limiting the accuracy and making
approximate calculations risky (since innocent ap-
proximations may lead to huge errors). One mani-
festation of this problem is that individual terms
(Liouville Space Paths)76 do not have the correct
scaling with size. The latter is only obtained once all
of the terms are carefully combined. In the oscillator
picture, these cancellations are built-in from the start
and each separate contribution to the susceptibility
scales properly (see Appendix F). The density matrix
approach thus guarantees size-consistency providing
an adequate real space description of the scaling and
saturation of off-resonant linear and nonlinear po-
larizabilities as shown in Section IIID. For odd
response functions such as γ, individual terms which
scale as n2 interfere to yield an n scaling, whereas
for even response functions such as â in substituted
molecules individual n scaling terms interfere to yield
as overall n0 scaling.87,151,297,300-302

Optical excitations move an electron from an oc-
cupied to an unoccupied orbital creating an electron-
hole pair. The CEO quasiparticle description of the
optical response is based on following the simulta-
neous and coupled dynamics of this pair as given by
the two indices of the transition density matrix. The
space of higher dimensionality (the pair) captures the
essential physics of the optical excitations, and even
the simplest (TDHF) factorization yields an adequate
description. A real space CEO analysis which pin-
points the origin of each optical transition is obtained
by displaying the electronic mode matrices. In semi-
conductors, the electron-hole pairs are loosely bound
and form Wannier excitons.40,464-467 In molecular
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aggregates, each pair is tightly bound and can be
considered as a single particle (Frenkel exciton).270,271

Conjugated molecules are intermediate between these
two extremes. The CEO thus offers a unified descrip-
tion of different materials and allows a direct com-
parison of their optical properties.468 It is possible to
go beyond the semiempirical Hamiltonians and the
TDHF approximation and include additional vari-
ables, using a different ansatz for the wave func-
tion.128-131,133,209,469 Formally the calculation of optical
properties using sums over states is also unified and
universal. However, very different approximate
schemes and terminologies are used in the calcula-
tion of the eigenstates of various systems. This
prohibits a clear comparison and obscures the origin
of differences. The electronic oscillator picture may
be applied to all correlated materials offering an
intuitive and simple alternative to common molecular
orbital descriptions.

The CEO approach provides a natural framework
for predicting and guiding the design molecules with
specific properties. Rather than asking which of the
many-electron states are most relevant, we can
explore how different regions of the molecule couple
and affect each other. The electronic excitations of a
large molecular system can thus be broken into
separate chromophores, despite the delocalized na-
ture of the underlying electronic states. Even when
electron (and hole) exchange between segments is
blocked, Coulomb interaction does allow the transfer
of energy through the migration of electron-hole
pairs (excitons). One can then address directly the
effects of donor-acceptor substitutions and geometry
(see Section IIIB). A new type of chemical intuition
which focuses directly on the electronic charges and
coherences and is not based on properties of many-
electron eigenstates emerges naturally (see Sections
III and IV). Much chemical intuition is based on the
charge density.61 The coherences make it possible to
directly view how different parts of the molecule are
coupled and how a perturbation at one point can
affect the electronic motion at other regions. We
further note that by treating the electronic degrees
of freedom as oscillators we can couple them more
naturally to nuclear degrees of freedom, which con-
stitute another set of oscillators. The incorporation
of nuclear notions is thus straightforward, and lends
itself easily to semiclassical approximations.75,470 The
time-dependent density-matrix should then allow us
to follow the dynamics of coherent intramolecular
and intermolecular vibrations, solvent modes, and
isomerization and account for vibronic structure and
line broadening;471 Interfacing with excited-state
molecular dynamics simulations is thus most natu-
ral.228,472,473 This approach allows modeling of complex
vibronic phenomena during photoexcitation dynamics
on femto- to nanosecond time scales in large molec-
ular systems (up to hundreds of atoms size).474

Nonadiabatic couplings can also be expressed using
the transition density matrices.78,475 The CEO was
recently applied to electron energy loss and X-ray
spectroscopy which requires the calculation of the
entire wavevector and frequency-dependent elec-
tronic structure factor S(k,ω).476,477
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VII. Appendix A: The TDHF Equations of Motion
of a Driven Molecule

The TDHF equations of motion follow the evolution
of the reduced single-electron density matrix eq 1.4
representing the molecule driven by an external field
F(t) ) Fj + δF(t) where the ground-state density matrix
Fj is the key input to these calculations. The diagonal
element Fnn represents the charge at the nth atomic
orbital, and

is the net charge on the atom A. The off-diagonal
elements Fnm (n * m) represent the electronic coher-
ences between atomic orbitals. In particular, FjnAmB

describe the chemical bonding strength (bond-order)
between atoms A and B. The matrix elements of
δFnm(t) represent the changes in these quantities
induced by the external electric field.

We start with the Heisenberg equation of motion
for Fnm(t) ) 〈cn

†cm〉(t):

where the Hamiltonian H is given by eq 2.1 and we
set p ) 1. Equation A2 is exact but not closed since
higher order products (two-electron density matrices
Fnmn′m′

(2) (t) ) 〈cn
† cm

† cn′cm′〉(t)) show up in the right-hand
side. Writing equations of motion for these higher
products will yield increasingly higher products. This
is the famous hierarchy of many-body dynamics that
is common to classical and quantum mechanics. To
overcome this difficulty, one needs a truncation
procedure. The simplest assumes that the many-body
wave function is given by a single Slater determinant
at all times. This yields the time-dependent Hartree-
Fock factorization77,81,83,87,156

qA ) ∑
n∈A

Fjnn - ZA (A1)

i
∂Fnm

∂t
) 〈[cn

†cm, H]〉 (A2)

〈cn
† cm

† cn′cm′〉(t) ) 〈cn
†cn′〉〈cm

† cm′〉(t) + 〈cn
†cm′〉〈cm

† cn′〉(t)
(A3)
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Applying this approximation to eq A2 yields the
following closed equations of motion for the single-
electron density matrix F(t).

To zero order in the field, we recover the stationary
solution eq 2.9.

This set of K × K matrix equations may be solved
numerically for δF(t) either in the frequency151,153 or
the time478 domain. By restricting the number of
equations to variables which contain only M oc-
cupied-unoccupied orbital pairs, we can develop a
convenient algebra of electronic oscillators.77,156 To
that end, we first decompose δF(t) into two compo-
nents

where ê represents the particle-hole (interband) and
T(ê) represents the particle-particle and the hole-
hole (intraband) parts.

Since the many-electron wave function is repre-
sented by a single Slater determinant, the total
density matrix F(t) must be a projector at all times:
76,77,83

This idempotent property of Fj allows us to project any
single particle matrix ú into the interband (p-h)
subspace

Consequently, not all elements of the density matrix
are independent. The number of degrees of freedom
of δF subject to the condition eq A6 is precisely the
number of its particle-hole matrix elements,77 and
T(ê) can therefore be expressed in terms of ê96,219

using eq A6 and eq A5

where I is the unit K × K matrix. Equation A8 can
be expanded in powers of ê

An alternative expansion is77,81

In eqs A9 and A10, all ê are taken at time t, ê ) ê(t).
Formally, interband and intraband subspaces of
K × K density matrix have 2N(K - N) and N2 +
(K - N)2 dimensions, respectively. These subspaces
are clearly decomposed only in the MO representa-
tion. Equations A7-A10 provide a convenient way
of separating interband and intraband subspaces in
an arbitrary (e.g., site) basis set. The expressions in

Appendices A-F (except equations in MO represen-
tation which include X, Y, p, and q) hold for an
arbitrary representation and all entering matrices
have K × K size.

Projecting eq A4 onto the interband subspace using
eq A7, we obtain the following closed equations of
motion for ê.

where L is a linear operator in Liouville space (i.e.,
superoperator)77,81,87,300 given by eq 2.19, and

is the nonlinear part of the equation projected onto
the particle-hole subspace (eq A7). The Fock opera-
tor F and the Coulomb operator V were defined by
eqs 2.11 and 2.12. The equations of motion of ê (eq
A11) have fewer variables than those of δF (eq A4)
but contain additional nonlinearities. However, ê is
the set of truly independent variables that are
required to uniquely represent δF.

The time-dependent polarization which determines
all optical properties is finally given by

Equations A11 and A8 constitute the basic TDHF
equations.77 They may be solved by expanding the
density matrix in powers of the external field

where T(j)(t) is expressed in terms of ê(j) by comparing
eq A9 (or eq A10) with eq A14:

The polarization to jth order in the external field
E(t) is calculated by taking the expectation value of
the dipole operator µ with respect to the time-
dependent density matrix

with

The original nonlinear eq A11 has thus been trans-
formed into a hierarchy of linear inhomogeneous
equations that may be readily solved. To jth order
we have

i
∂F(t)
∂t

) i
∂δF(t)

∂t
) [F(F), F] - E(t)‚[µ, F] (A4)

δF(t) ) ê(t) + T(ê(t)) (A5)

(Fj + δF(t))2 ) Fj + δF(t) (A6)

úp-h ) [[ú, Fj], Fj] (A7)

T(ê) ) (Fj - I
2)(I - xI - 4ê2) (A8)

T(ê) ) (I - 2Fj)(ê2 + ê4 + 2ê6 + ‚‚‚) (A9)

T(ê) ) 1
2!

[[ê, Fj], ê] +

1
4!

[[ê, Fj], [[ê, Fj], [[ê, Fj], ê]]] + ‚‚‚ (A10)

i∂ê
∂t

- Lê ) R(ê)p-h - E(t)‚[µ, Fj] (A11)

R(ê) ) [F(ê), ê + T(ê)] + [F(T(ê)), Fj + ê] -
E‚[µ, ê + T(ê)] (A12)

P(t) ) Tr(µF(t)) ) Tr(µê(t)) + Tr(µT(ê(t))) (A13)

ê ) ê(1) + ê(2) + ‚‚‚, T(ê) ) T(2)(ê) + T(3)(ê) + ‚‚‚
(A14)

T(1)(t) ≡ 0

T(2)(t) ) (I - 2Fj)(ê(1)(t))2

T(3)(t) ) (I - 2Fj)(ê(2)(t)ê(1)(t) + ê(1)(t)ê(2)(t))

T(4)(t) ) (I - 2Fj)(ê(3)(t)ê(1)(t) + ê(2)(t)ê(2)(t) +
ê(1)ê(3)(t)) (15)

P(j)(t) ) Tr(µδF(j)(t)) (A16)

δF(j)(t) ) ê(j)(t) + T(j)(t) (A17)

i
∂ê(j)(t)

∂t
- Lê(j)(t) ) η(j)(t) (A18)
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where the inhomogeneous part η(j)(t) is given in terms
of Fj and lower order ê(k) k < j,

The linear and nonlinear optical response is cal-
culated by solving eq A18 either in the frequency or
in the time domain. In the frequency, this involves
diagonalizing the linearized Liouville operator L
which formally requires a large memory (∼K4 where
K is the total number of orbitals in the system). Time-
domain calculations do not require a large memory
(∼K2) and may be applied for larger systems.478

However, evaluating the commutators in eqs 2.19
and A12 is time-consuming. These difficulties have
so far limited the solution of eq A18 to basis set size
of about 100 functions. Computationally efficient
Krylov-space algorithms may be used to overcome
this limitation.

VIII. Appendix B: Algebra of Electronic
Oscillators

In this appendix, we review the main properties
of the tetradic linear M ) N × (K - N) dimensional
space defined by the Liouville operator L.77,81,87,300 We
first introduce the following scalar product of any two
interband matrices ê and η which are the elements
of this space.77,81,300,479

We have used the bracket to underline the similarity
with Dirac’s Hilbert space notation. Equation B1
obeys the following properties:

This is an unusual scalar product. It can further be
expressed through the particle-hole (X) and hole-
particle (Y) components of the interband density
matrix in MO representation as

where ê ) [Yê

Xê], η ) [Yη

Xη], and angular brackets denote
standard (Hermitian) scalar product of two vectors.
We also note that the commutator of Fj with an
arbitrary interband matrix ê ) [Y

X] corresponds to
transformation [Y

X] f [-Y
X ].

The main reason for introducing this scalar product
is that the Liouville operator L defined by eq 2.19 is
Hermitian with respect to this scalar product:

The operator adjoint to L,

is also Hermitian with respect to this scalar product
i.e., 〈L†ê|η〉 ) 〈ê|L†η〉.219

The eigenmodes êν and eigenfrequencies Ων of L
satisfy eq 2.15 and come in conjugate pairs: each
vector êν with frequency Ων has a counterpart ê-ν )
êν

† with frequency Ω-ν ) -Ων. Since L is real, the
electronic modes can be taken to be real as well. The
electronic modes can be expressed through the par-
ticle-hole (X) and hole-particle (Y) components in
the MO representation as

the magnitudes of X elements are usually much
larger than Y, since the former includes both the first
(CI singles) and the higher order electronic correla-
tions, whereas the latter includes only the second and
the higher order electronic correlations present in the
RPA.

Similarly, the spectrum of L̂† consists of pairs of
conjugated eigenvectors with eigenfrequencies (Ων:

which correspond to [-Yê

Xê ] and [Xê

-Yê] pairs of eigen-
vectors.

A classical mode picture of the optical response
may be obtained by constructing the electronic oscil-
lators defined by the coordinate-momentum variables

In the MO representation P and Q are given by

where qν ) Xν + Yν and pν ) Xν - Yν. We further
define

which are the stiffness and kinetic energy matrices,
respectively. We found that the ê ê† variables are
more convenient for computing the optical response
and the (P, Q) representation is useful for gaining a
classical insight. The eigenvalue problem eq 2.15 in
these variables becomes

Similarly, P and Q satisfy the relation

We shall adopt the following normalization of the
electronic modes:77

η(1)(t) ) -E(t)[µ, Fj]

η(2)(t) ) [[([V(δF(1)(t)), δF(1)(t)] + [V(T(2)(t)), Fj] -
E(t)[µ, δF(1)(t)]), Fj], Fj]

η(3)(t) ) [[([V(δF(2)(t)), δF(1)(t)] +
[V(δF(1)(t)), δF(2)(t)] + [V(T(3)(t)), Fj] -

E(t)[µ, δF(2)(t)]), Fj], Fj] (A19)

〈ê|η〉 ≡ Tr(Fj[ê†,η]) (B1)

〈ê|η〉 ) 〈η†|ê†〉* ) - 〈η|ê〉 (B2)

〈ê|η〉 ≡ (Xê, Xη) - (Yê, Yη) (B3)

〈Lê|η〉 ) 〈ê|Lη〉 (B4)

L†ê ) [ê, F] + V([ê, Fj]) (B5)

êν ) [Xν
Yν ], êν

† ) [Yν
Xν ], ν ) 1, ..., M (B6)

L†[êν, Fj] ) Ων[êν, Fj], L†[êν
†, Fj] ) -Ων[êν

†, Fj],
ν ) 1, ..., M (B7)

Qν )
êν + êν

†

x2
Pν ) -i

êν - êν
†

x2
(B8)

Qν ) 1
x2[Xν + Yν

Xν + Yν ] ) 1
x2[qν

qν ]
Pν ) -i

x2[Xν - Yν
-Xν + Yν ] ) -i

x2[pν
-pν ] (B9)

T ) A + B K ) A - B, (B10)

Kqν ) Ωνpν Tpν ) Ωνqν ν ) 1, ..., M (B11)

-iLQν ) ΩνPν iLPν ) ΩνQν ν ) 1, ..., M (B12)
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In the MO representation this normalization reads:

The electronic oscillator is a pair of conjugated
electronic modes (K × K matrices êν and êν

† or Pν and
Qν, which have 2M interband components Xν and Yν
or pν and qν in MO representation) with frequency
Ων. Any interband K × K matrix ú can be expanded
in the basis set of electronic oscillators as

In the following appendices, we will use several
useful identities that hold for any interband matrices
ê and ú and directly follow from eqs A6-A10 and
B1:77,89,219,81

Finally, the effective single body Coulomb operator
V obeys

IX. Appendix C: The IDSMA Algorithm
The density-matrix-spectral-moments algorithm

(DSMA)81,89,300 is an approximate scheme for solving
the TDHF equations that allows us to calculate ê(j)

from the source (η(j)) by solving eq A18 without a
direct diagonalization of L. This is accomplished by
computing the set of electronic oscillators that domi-
nate the expansion of η(j). Without loss of generality,
we can take η(j)(t) to be real and express it in terms
of our momentum variables as81,300

where η(j) can be viewed either in the frequency or in
the time domain, and µν

(j) ) x2〈xν|η(j)〉 ) 〈Qν|η(j)〉 are
the real frequency (or time) dependent expansion
coefficients. These electronic oscillators provide a
convenient procedure for solving eq A18.77

The formal solution of eq A18 in the time and
frequency domain is

Substituting the expansion (C1) for η(j) in these
equations and utilizing the eigenvector properties of
the modes

we can recast the solution of eq A18 in terms of
eigenmodes êν and êν

† (or Pν and Qν). For example,
the jth order interband component of the reduced
single-electron density matrix in the frequency do-
main is given by

Since only few electronic oscillators contribute sig-
nificantly to the source in the expansion (C1), the
summation can be truncated at some effective num-
ber of oscillators M′ , M without sacrificing accuracy.

The family of the density-matrix spectral moments
is defined as Sn ≡ Lnη which are the expansion
coefficients in the short-time evolution of the density-
matrix response function. These moments are used
to construct the main DSMA equations81,300

where S0
(j) ) η(j) and Sn

(j) ) LnS0
(j), n ) 1, 2, .... In

principle, the spectral moments Sn can be expressed
using the electronic normal modes êν, but the choice
of momentum-coordinate Hermitian variables has
two advantages: First, it allows the separation of the
total system of equations (C5, C6) into two indepen-
dent subsystems (C5) and (C6), which is computa-
tionally preferable. Second, the matrix η, which is the
input to the procedure, is Hermitian and expressed
through momentum variables (eq C1). The higher
moments Sn are, therefore, either momentum or
coordinate type.

The scalar products Kn
(j) ≡ 〈Sn

(j)|Sn+1
(j) 〉, n ) 1, 2, ...,

2M′ provide a set of equations for the frequencies Ων

and effective oscillator strength f ν
(j) ) 2(µν

(j))2Ων (f ν
(j)

and µν
(j) depend on the external field (eq A11). For

example, for linear response we have f ν
(1) ≡ -E(t)fν

and µν
(1) ≡ -E(t)µν. Here fν and µν are the oscillator

strength and the ground-state dipole, respectively.):

The set of DSMA equations (C5-C7) is now complete.

〈êR|êâ〉 ) δRâ 〈êR
† |êâ〉 ) 0 (B13)

〈PR|Qâ〉 ) iδRâ 〈PR|Pâ〉 ) 〈QR|Qâ〉 ) 0 (B14)

(XR, Xâ) - (YR, Yâ) ) δRâ (pR, qâ) ) δRâ (B15)

ú ) ∑
ν

〈êν
†|ú〉êν - 〈êν|ú〉êν

† )

∑
ν

〈Qν|ú〉iPν - 〈iPν|ú〉Qν, ν ) 1, ..., M (B16)

ê ) Fê + êF (B17)

Fê2 ) ê2F (B18)

[ê, F]) (I - 2F)ê (B19)

ê(I - 2F)ê ) -(I - 2F)ê2 (B20)

1
2

[[ê, F], ê] ) (I - 2F)ê2 (B21)

[[ê, F], ú] ) (I - 2F)(êú + úê) (B22)

〈ê|V(ú)〉 ) 〈V(ê)|ú〉 (B23)

η(j) ) ∑
ν)1

M

〈êν
†|η(j)〉êν - 〈êν|η(j)〉êν

† )

∑
ν)1

M

〈Qν|η(j)〉iPν ) ∑
ν)1

M

µν
(j)iPν (C1)

ê(j)(t) ) ∫0
t
dτe-iL(t-τ)η(j)(τ) ê(j)(ω) ) 1

ω-L
η(j)(ω)

(C2)

e-iLtêν ) e-iΩνtêν e-iLtêν
† ) eiΩνtêν

†

1
ω - L

êν ) 1
ω - Ων

êν
1

ω - L
êν

† ) 1
ω + Ων

êν
† (C3)

ê(j)(ω) ) ∑
ν)1

M

µν
(j)(ω)[ Ων

Ων
2 - ω2

Qν -
iω

Ων
2 - ω2

Pν] (C4)

Sn
(j) ) ∑

ν)1

M′

Ων
n µν

(j)iPν n ) 0, 2, 4, ..., 2M′ - 2 (C5)

Sn
(j) ) ∑

ν)1

M′

Ων
n µν

(j)Qν n ) 1, 3, 5, ..., 2M′ - 1 (C6)

∑
ν)1

M′

fν
(j) Ων

2n ) Kn
(j) n ) 0, 1, 2, ..., 2M′ - 1 (C7)
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To start our calculations, we compute the moments
Sn

(j) and Kn
(j) by acting Liouville operator L (2.19) on

the source η(j) and using the scalar product (B1). We
then solve eqs C7 for the frequencies Ων and oscillator
strengths f ν

(j). These nonlinear equations have a
simple analytical solution.89 Once we have Ων and
µν

(j), we solve eqs C5 and C6 for the modes Pν and Qν.
The most time-consuming part of the DSMA is the
calculation of commutators. Typically only a small
number of modes is required and the DSMA greatly
reduces the numerical effort involved in solving the
complete TDHF equations.

The procedure starts with a single mode ap-
proximation and by successively adding new modes
improved approximations for frequencies and oscil-
lator strengths of the dominant modes is obtained,
until some convergence criteria are satisfied. The
linear response j ) 1 is calculated first. The resulting
first-order modes are used to calculate the relevant
modes for the second-order response (j ) 2) and so
forth. Because of truncation at M′ oscillators, the
resulting electronic modes do not coincide with the
TDHF modes. Equations B12 hold approximately,
but the normalization relations (B14) are satisfied
exactly. These effective electronic oscillators give the
best approximation for the spectrum with a given
number of features (M′).

The following examples use the PPP Hamiltonian
to demonstrate the efficiency of the DSMA. Conver-
gence as a function of the number of modes M′, M′ )

1-6 is shown in Figure 16 for octatetraene (N ) 8).
Only few (3-4) modes contribute significantly to the
response, but to calculate them accurately we need
to include some additional high-frequency modes
with very small oscillator strengths. Using six modes,
we reproduce the frequencies and the first-order
effective dipoles µν

(1) (ω ) 0) to 10-8 of the values for
the full TDHF (16-mode) calculation. The figure also
shows that the polarizabilities converge much faster
than the frequencies and dipoles of individual modes.
The convergence of the linear absorption (the imagi-
nary part of ø(1) (eq 1.5)) with the number of modes
for a N ) 40 atom polyacetylene oligomers is dis-
played in Figure 17. Note that the strong band edge
transition is reproduced well even at M′ ) 4. The
weaker transitions at higher frequencies require
more modes. The convergence of the lowest three
nonvanishing polarizabilities (R, γ, and ε) of poly-
acetylene chains with up to 40 carbon atoms as a
function of the number of modes used is shown on
Figure 18. The linear response is well represented
by a single mode calculation, whereas the 8-mode
approximation gives adequate values for high hyper-
polarizabilities.

One advantage of the DSMA is that it immediately
gives a global picture of the entire spectrum. How-
ever, the number of effective oscillators M′ cannot be
increased at will to improve the accuracy. High
moments scale as (Kn ∼ Ω2n) and are dominated by
the high-frequency tails. Therefore, increasing the
number of oscillators does not refine the low and
middle frequency range. We found that in practice
M′ is limited to e 10-14. Applications of the DSMA
using the PPP Hamiltonian which only describes the

Figure 16. Variation of electronic oscillator frequencies
Ων, effective dipole moments µν

(1), and first (R), third (γ),
fifth (ε), and seventh (η) off-resonant polarizabilities with
the number of modes used for octatetraene (N ) 8). The
polarizabilities will be defined later in this Section. Here
convergence of the DSMA to the full TDHF calculation
(M ) 16 is demonstrated. The magnitudes of polarizabili-
ties are normalized at their converged values: R ) 3.2 ×
10-23 esu, γ ) 6.6 × 10-35 esu, ε ) 1.4 × 10-46 esu, η )
2.3 × 10-59 esu. Reprinted with permission from ref 300.
Copyright 1996 American Institute of Physics.

Figure 17. Convergence of the linear absorption (the
imaginary part of R (eq 1.5)) with the number of modes
used for N ) 40 atom oligomer. The line width is Γ ) 0.2
eV. Note, that the fundamental band at 2.57 eV with
strength 109 eÅ2/V (1.57 × 10-21 esu) remains basically
the same in all panels. Reprinted with permission from ref
300. Copyright 1996 American Institute of Physics.
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π-electron system allowed one to calculate accurately
spectra of polyenes dominating by a few resonances.
The INDO/S Hamiltonian includes also the valence
electrons; therefore, the source is not limited to π-π*
molecular excitations but also depends on a manifold
of high-frequency atomic transitions. For molecules
with many peaks in the spectra, the DSMA does not
reproduce delicate spectral features such as excita-
tions with a small oscillator strength.

Improved accuracy may be obtained by applying
the DSMA iteratively. The DSMA automatically
generates orthonormal effective oscillators (eqs B14),
which satisfy the eigenvalue equation (B12) in an
optimal way. Therefore, each of the effective DSMA
modes is a superposition of the exact TDHF modes
with similar frequencies. The entire spectrum is thus
divided into several regions. Each effective oscillator
is responsible for part of the spectrum and is domi-
nated by fewer exact oscillators than the initial
source. This property allows one to use any effective
mode Pν as a new fictitious source term η ) iPν in
the DSMA. The resulting oscillators are much closer
to the exact ones. This procedure (i.e., using one of
the new oscillators as a new fictitious source for the
next DSMA level) can be repeated until some con-
vergence criteria are satisfied. This is the iterative
DSMA (IDSMA) procedure. In practice, this fictitious
source is dominated by a single oscillator (P1, Q1)
which converges to the exact one. To recover the next
mode, the same iterative procedure can be applied

with one principal difference: all input sources must
be made orthogonal to the lower frequency modes.
Thus by using

all the recovered modes are excluded from the source
in the following calculations. We can continue this
iterative process utilizing this orthogonalization pro-
cedure to refine several electronic modes. This yields
an expansion of the original source and allows us to
focus on desirable fine features of the spectrum at
high resolution.

The static polarizabilities are readily obtained
using eq A13

where δF(j)(ω ) 0)) is the jth order of the density
matrix induced by the static electric field Eo and
ø(1) ) R(0), ø(2) ) â(0), ø(3) ) γ(0), etc. The resulting
electronic oscillators may be used to construct fre-
quency (time)-dependent optical response. Frequency-
dependent response functions up to the third order
are expressed using the electronic modes in Appendix
F.

The DSMA has a close formal connection with
other short-time algorithms widely used in different
contexts such as Stieltjes imaging procedure, which
approximates a continuous distribution given its low-
order moments,480-482 the Mori-Zwanzig algorithm of
reduced dynamics483,484 and the continued fraction
representation of correlation functions.485 In particu-
lar, we note the analogy with the analysis of optical
line shapes in terms of spectral moments.486 The
moments can be easily calculated without going
through a complex eigenvalue problem, and often
very few moments provide for an adequate represen-
tation of the line shape.

In summary, the DSMA calculates the optical
response by solving the TDHF equations for motion
of the single-electron density matrix. The algorithm
consists of several levels of increasing complexity.
First, the entire optical response with low resolution
is recovered at extremely low computational cost. All
strong transitions are fully recovered, but the fine
structure of spectrum is missing. The iterative DSMA
provides more detailed information. The simplest
version of this procedure was implemented to calcu-
late the optical response of organic molecules. The
band edge transition oscillator was calculated first.
The remaining electronic oscillators were recovered
sequentially with increasing frequency and were used
to compute optical polarizabilities. This approach
allows us to recover accurately the experimentally
relevant low-frequency spectral region (up to ∼8 eV)
in conjugated molecular systems.81,91,92

X. Appendix D: Lanczos Algorithms

A. Lanczos Algorithm for Hermitian Matrices
The Hermitian Lanczos algorithm finds a few

lowest eigenvalues of a Hermitian matrix H by

Figure 18. (A-C): convergence of the lowest three
nonvanishing polarizabilities (R, γ, and ε) of polyacetylene
chains (up to 40 carbon atoms) with the number of modes
used for calculations. The polarizabilities will be defined
later in this section. Here convergence of the DSMA is
demonstrated. The results obtained with the full TDHF
calculations (panels A and B) and with M ) 12 modes
(panel C are shown by solid lines. Note that M ) 7 modes
approximation gives good values for hyperpolarizabilities
γ, and ε. Reprinted with permission from ref 89. Copyright
1996 Elsevier Science.

η⊥ ) η - ∑
k

recovered

〈Qk|η〉Pk (C8)

ø(j) ) - 1
Eo

k
Tr(µδF(j)(ω ) 0)) (C9)
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starting with an arbitrary vector v0 and constructing
linear combinations of vectors vm ) Hmv0, m ) 0,
1, ... M′. The coefficients in the linear combination of
vm are found using the Ritz variational proce-
dure214,215 which guarantees to yield the best ap-
proximation to the lowest eigenvalue of H that
belongs to a Krylov subspace. This subspace (KM′)
spanned by the vectors v0...vM′ approximates an
invariant subspace of H with increasing accuracy as
the number of vectors (M′) is increased.

A simple recursive procedure allows one to build a
set of orthogonal vectors wm spanning the same
Krylov subspace. Finding each new vector wm+1 only
requires the two previous vectors wm and wm-1:215,218

At each step m, the pair of coefficients Rm and âm is
chosen to preserve orthonormality of wm+1 with
respect to wm and wm-1. The recursion eq D1 ensures
that wm form an orthogonal set and that the Ray-
leigh-Ritz matrix H̃mn ) (wm, Hwn) is symmetric
tridiagonal, with the diagonal and subdiagonal given
by the coefficients Rm and âm, respectively.

The matrix H̃ can be viewed as the result of the
orthogonal projection of the full matrix H onto the
subspace KM′. It can be written in matrix form:

where WM′ is the rectangular matrix whose columns
are the vectors w1, ..., wM′. The lowest eigenvalue of
H̃ gives approximation to the true lowest eigenvalue
of H and the corresponding eigenvector y gives the
coefficients of expansion of the eigenvector v of H in
the basis of wm, v ) WM′y. Indeed, if H̃y ) λy, then
(wm, HWM′y - λWM′y) ) 0, m ) 1, ..., M′, i.e., the
residual vector is orthogonal to KM′. Thus, the
original eigenvalue problem Hvν ) Ωνvν, ν ) 1, ...,
M has been reduced to eigenvalue problem H̃yν ) λνyν,
ν ) 1, ..., M′ in much smaller Krylov space spanned
by wm vectors, which contain an approximation for
the original eigenvector. The latter could be found
with desirable accuracy by increasing Krylov space
dimensionality M′.

The recursive relation (D1) provides a great com-
putational advantage to the Lanczos algorithm, mak-
ing it applicable to very large matrices, since the
required memory does not grow with the number of
iterations. The problem of loss of global orthogonality
due to computer round-off errors has been extensively
studied214 and is not addressed here.

B. Lanczos-algorithm for Non-Hermitian Matrices

The major difficulty with non-Hermitian matrices
is that in general, no variational principle exists for
their eigenvalues, and therefore the Ritz procedure
is not applicable. In addition, the Lanczos recursion
eq D1, which is based on the Hermiticity of H, does
not yield an orthonormal set of vectors wm when

applied to a non-Hermitian matrix L. In search of
efficient algorithms for RPA problem, the symplectic
Lanczos algorithm was suggested by Mei487 and
improved by Benner.488 This method exploits the
analogy between the unitary transformations that
preserve Hermiticity and the symplectic transforma-
tions that preserve the paired structure of eqs 2.15
and 2.18. The oblique Lanczos algorithm for general
non-Hermitian matrices214 was applied to the TDHF
problem in ref 219. However, this method is not
stable for some initial trial vectors and should be
restarted once it diverges, since it is not based on the
of variational principle.

However, even though the RPA-type matrix is non-
Hermitian, its block paired structure (eq 2.18) pro-
vides some properties similar to the Hermitian
matrices. In particular, there exists a variational
principle that yields the lowest positive eigenvalue
of eq 2.15 suggested by Thouless back in 1961:210

where X and Y span particle-hole and hole-particle
components of the interband density matrix, respec-
tively. The minimum always exists, since the HF
stability condition eq 2.9 keeps the numerator posi-
tive. Note, that the denominator can be arbitrarily
small, and therefore the expression has no maximum.

The oblique Lanczos algorithm formulated for
RPA219 was further improved using the Thouless
variational principle (eq D3).220,221 The resulting
stable Lanczos procedure efficiently solves RPA
eigenvalue problem and is described below. It it
convenient to work in the space of coordinate-
momentum variables q ) X + Y and p ) X - Y (eq
B9) where the Thouless minimal principle eq D3 is
given by

which is the condition for the lowest frequency of a
harmonic Hamiltonian system spanning all phase-
space configuration {P, Q} with normalization condi-
tion (p, q) ) 1 (eq B15). The two terms in the rhs of
eq D4 are the kinetic and potential energies of the
system at the configuration {p, q}, respectively.

The minimum of eq D4 can be found using the
generalized Lanczos recursion220,221

which generates configuration space vectors {qm, pm}
that span the Krylov subspace of eq D3. The action
of operators T and K on vectors pm and qm can be
computed directly using eq 2.19. Coefficients Rm, âm,
γm, and ηm are chosen at each step m to ensure

Ωmin ) min{X, Y}

[X, Y](A -B
B -A )[XY ]

|(XX) - (YY)| (D3)

Ωmin ) min(pq))1
(p, Tp)

2
+

(q, Kq)
2

, (D4)

qm+1 ) âm+1
-1 (Tpm - Rmqm - âmqm-1) (D5)

pm+1 ) ηm+1
-1 (K†qm - γmpm - ηmpm-1)

m ) 1, ..., M′ (D6)

wm+1 ) âm+1
-1 (Hwm - Rmwm - âmwm-1),

m ) 1, ..., M′ (D1)

H̃ ) WM′
† HWM′ (D2)
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orthogonality (qm+1, pm) ) (qm+1, pm-1) ) (qm-1, pm) )
(qm-1, pm+1) ) 0. The vectors pm and qm form thus a
biorthogonal basis, (qn, pm) ) δmn, and the matrices
K̃ij ) (qi, Kqj) and T̃ij ) (pi, Tpj) are symmetric
tridiagonal, with the only nonzero matrix elements
K̃ii ) Ri, K̃i,i-1 ) K̃i-1,i ) âi, T̃ii ) ηi, and T̃i,i-1 )
T̃i-1,i ) γi. Expanding q ) ∑m)1

M′ cmqm and p ) ∑m)1
M′

dmpm we obtain 2M′ × 2M′ eigenvalue equation

which has the same structure as the original eigen-
problem eq D7 but in the space of much lower
dimensionality M′. The lowest positive eigenvalue
Ωmin of eq D7 gives the approximation to the true
RPA eigenfrequency. The accuracy increases expo-
nentially with expanding Krylov space dimensional-
ity M′ as illustrated in Figure 19. Similar to the
Hermitian Lanczos method, we need to retain only
three latest pairs {pm, qm} of expansion vectors, which
ensures minimal memory requirements for this pro-
cedure.

The diagonal part of L in the molecular-orbital
representation is dominant because the major con-
tribution of the transition frequencies comes from
energy differences of occupied-unoccupied molecular
orbital pairs. Thus, the diagonal approximation cor-
responds to the HOMO-LUMO approximation for
the transition, and gives reasonable guess for the
starting vectors p(1) and q(1). Once the lowest pair of
eigenmodes {ê1, ê1

†} (or equivalently {p1, q1}) with
Ω1 > 0 is found, one can work in the orthogonal
subspace by choosing initial vectors p(2) and q(2)

orthogonal to p1 and q1, respectively. All subsequent
Lanczos expansion vectors {pm

(2), qm
(2)} will remain

orthogonal to {p1, q1} as follows from eq D4 (the
oblique projection may be used to correct the loss of
orthogonality at large M′.214,220,221) The Lanczos al-
gorithm will thus converge to the second-lowest RPA

eigenvalue. Alternatively, the deflection procedure214,219

could be used for the same purpose. Suppose we have
found the j lowest eigenmodes ê(1, ê(2, ..., ê(j. We
introduce the deflected operator Ldef:

where the modes êν are normalized: 〈êν
†|êν〉 ) 1 for

ν > 0. The operator Ldef has the same eigenmodes as
L; however, the eigenvalues of ê(ν for v ) 1, ..., j are
shifted: Ω(ν

(d) ) ((Ων + ∆). The next pair of eigen-
modes of L, ê((j+1), thus corresponds to the lowest pair
of Ldef, provided ∆ is large enough. Orthogonalization
(or deflection) procedures thus allow one to find RPA
eigenproblem (eqs 2.15 and 2.18) solutions one by
one.

It is illustrative to compare the results of the
IDSMA algorithm, which provide an approximate
spectrum, and Lanczos algorithm, which provide
accurate eigenstates. The PPV-4 oligomer has been
computed using oblique Lanczos algorithm (50 modes)
and IDSMA (9 modes for each of the three polariza-
tion directions).219 The results shown in the top and
bottom panel of Figure 20, respectively, are very close
for both algorithms for low-energy spectrum (below
4 eV) where the peaks are well separated energeti-
cally. On the other hand, the higher energy (5-6 eV)
spectrum has many closely lying modes resolved by
the Lanczos algorithm. IDSMA approximates these
peaks by a single effective oscillator. Lanczos and
IDSMA are thus complementary since they provide
“high” and “low” resolution spectra. In particular, the
DSMA algorithm is extremely useful for computing
off-resonant response because it allows one to take

Figure 19. Convergence of the Lanczos algorithm for
PPV-4 oligomer. Reprinted with permission from ref 219.
Copyright 1996 American Institute of Physics.

K̃cm ) Ω̃mdm Tdm ) Ω̃mcm ν ) 1, ..., M′ (D7)

Figure 20. Linear absorption spectrum for PPV-4 oligo-
mer calculated using the DSMA (top panel) and the
Lanczos algorithm (bottom panel). Reprinted with permis-
sion from ref 219. Copyright 1996 American Institute of
Physics.

Ldefê ≡ Lê + ∑
ν)1

j

∆{êν〈ê, êν〉 - êν
†〈ê, êν

†〉} (D8)
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into account integral effective oscillator contributions
from the entire spectrum. In comparison, other
algorithms, such as Lanczos and Davidson, are able
to calculate contributions to the response only from
a narrow spectral region.

XI. Appendix E: Davidson’s Algorithm

A. Davidson’s Preconditioning

The Hermitian Lanczos algorithm is the best
method for approximating extreme eigenvalues, when
no extra information about the matrix H is given
besides the prescription for computing the matrix-
vector products. In some problems, there exists some
useful information about the internal structure of H,
and preconditioning techniques can speed up the
convergence. One of the most widely used methods
of this class is the Davidson algorithm216 that utilizes
the information about the diagonal elements of H
(e.g., CI Singles matrix H ) A in eq 2.18), and
requires fewer iterations when the diagonal elements
of H are dominant. Davidson derived his method
though perturbation analysis for large scale CI
calculations.216 The idea of Davidson’s precondition-
ing is simple. As in the Lanczos algorithm, the
eigenvalue problem is solved by projecting the matrix
onto a certain subspace KM′ that expands with the
number of iterations. In the Lanczos algorithm, the
space KM′ is augmented at each iteration step by the
residual vector

where λM′ and vM′ are approximations for an exact
eigenvalue and eigenvector, respectively, in the space
KM′. In contrast, the Davidson algorithm augments
the subspace KM′ by

where D is the diagonal part of H (e.g., for H ) A,
Dij ) εi - εj where εi and εj are the energies of
unoccupied and occupied MOs in eq 2.8). In eqs E1
and E2 vectors rM′ and r̃M′, respectively, are intended
to be a correction to vM′.

To rationalize the merits of Davidson’s precondi-
tioning, we recall that the rate of convergence is
approximately exponential in the gap ratio489

where λ1, λ2, and λM are the smallest, second, and the
largest eigenvalues of H. The convergence thus
decreases if the desired eigenvalues are not well
separated from the rest of the spectrum. To improve
convergence, Lanczos algorithms with preconditioned
conjugate gradient method has been developed.490 In
the Davidson expansion eq E2, 1/(D - λM′I) can be
viewed as approximate inverse of (H - λM′I) if H is

dominated by its diagonal elements. Eventually, λM′
approaches a true eigenvalue λ and, therefore, the
distribution of the eigenvalues of Λ ) (H - λI)/(D -
λI) controls the asymptotic convergence of Davidson’s
method. We can easily see that the smallest eigen-
value of Λ is 0 and the other eigenvalues have the
tendency to be compressed around 1, making the gap
ratio eq E3 large and the Davidson’s method sub-
stantially more efficient than Lanczos when H is
dominated by its diagonal elements. We also note
that the Davidson algorithm requires the knowledge
of the entire basis of the subspace KM′ which imposes
heavier memory requirements compared to Lanczos
algorithm which only keeps three vectors from KM′.

B. Davidson’s Algorithm for Non-Hermitian
Matrices

Similarly to Lanczos method for solving the RPA
problem eq 2.15, Davidson’s algorithm needs to be
modified to take into account the block paired struc-
ture of eq 2.18 and scalar product eq B1. The first
RPA algorithm has been developed by Rettrup208 and
later improved by Olsen.222 The method has been
further refined in ref 79, combined with TDDFT
technique, and incorporated into Gaussian 98 pack-
age.142 We will follow ref 79 to describe this method.

We first note that in the space of coordinate-
momentum variables q and p (eq B10), the RPA
M × M eigenvalue problem (eq 2.18) can be presented
as

where T and K are the stiffness and kinetic energy
matrices, respectively. The right and left eigenvectors
of this non-Hermitian equation are qν and pν elec-
tronic modes which satisfy eq B11 with (pν, qν) ) 1
normalization condition (eq B15). Alternatively eq
2.18 can be presented in the form of Hermitian
eigenvalue problem:

where [q′] ) K-1/2[q]. Similarly to the Lanczos pro-
cedure, the Davidson’s algorithm constructs the
reduced analogue of eqs E4 (or E5) in KM′ subspace
with M′ , M.

To calculate the first k eigenvectors of L, the
algorithm starts from selected trial vectors in the
orthonormal subspace b1, ..., bM′, M′ > k. We next
generate configuration space vectors Kbm and Tbm,
m ) 1, ..., M′ using eq 2.19 (the most intensive CPU
step), and form matrices M̃mn

+ ) (bm, Tbn) and M̃mn
- )

(bm, Kbn) (m, n ) 1, ..., M′). The reduced analogues
of eqs E4 and E5 are constructed by computing,
respectively,

Diagonalizing matrix M(1) (or M(2)) we obtain the
reduced eigenvalues Ω̃ν which are the approximations

rM′ ) (H - λM′I)vM′ (E1)

r̃M′ ) 1
D - λM′I

(H - λM′I)vM′ (E2)

∆ )
λ2 - λ1

λM - λ2
(E3)

KT[q] ) Ω2[q] (E4)

K1/2TK1/2[q′] ) Ω2[q′] (E5)

M̃mn
(1) ) ∑

k
M̃mk

- M̃kn
+ (E6)

M̃mn
(2) ) ∑

jk
(M̃)mj

-1/2(M̃jk
+)(M̃kn

- )1/2 (E7)
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for eigenvalues of L. The approximate eigenvectors
of our RPA problem p̃ν and q̃ν are then computed as

where Lmν and Rmν are the left end right eigenvectors
of matrix M(1) (or M(2)), respectively. It was found
numerically in ref 79 that eq E7 provides faster
convergence than eq E6.

To improve the approximation, the dimensionality
of KM′ needs to be extended. Following ref 79, we
define 2k residual vectors

and a set of perturbed vectors using Davidson’s
preconditioning:216

where Dij ) εi - εj (εi and εj are the energies of
unoccupied and occupied MOs in eq 2.8) and indices
i and j run over the particle and hole variables in M
space. Finally, we orthogonalize the Wν vectors
among themselves and with respect to the previous
expansion vectors b1, ..., bM′, and add them to the
expansion set: b1, ..., bM′+2k expanding M′ to M′ +
2k. We then start with new expansion set and find
new approximations for eigenvalues and eigenvectors
of L and so on. This procedure is repeated until the
desired convergence criteria are satisfied.

XII. Appendix F: Frequency and Time Dependent
Nonlinear Polarizabilities

A. Equation of Motion for Electronic Oscillators
and Anharmonicities

We start with the equation of motion for the
interband component of the density matrix (eq A11)

where L is a Liouville operator (eq 2.19), V is a
Coulomb operator (eq 2.5), ê and T(ê) (eq A8) are
interband and intraband parts of the time-dependent
single-electron density matrix F(t) ) Fj + ê(t) + T(ê(t)),
respectively. T can be expanded in a Taylor series
which contains only even powers of ê (eqs A9 and
A10). For optical signals not higher than third order,
it is sufficient to retain only the lowest (second order)
term:

We next expand ê(t) in terms of modes êR (eq B16)

Each oscillator R is described by two conjugated
modes êR and êR

†. Adopting the notation of refs 77,
207, and 491, we define ê-R ) êR

† and Ω-R ) - ΩR, so
that equation LR ) ΩRêR would hold for R ) -M ...,
M. zR and its complex conjugate z-R ) zR

/ constitute
the complex oscillator amplitudes. Inserting the
expansion eq F3 into eq F1 and using eq F2 gives
the following equations for the complex amplitudes,

The amplitudes for the adjoint (negative frequency)
variables are simply the complex conjugates. This
nonlinear equation may be solved by expanding z(t)
(z*(t)) in powers of the external field E(t):

Similarly, using eqs A13 and F2 we obtain the optical
polarization

In eqs F4 and F6, we only retained terms that
contribute to the third-order optical response; R ) 1,
..., M, â, γ, δ ) - M, ..., M, and the coefficients in the
rhs could be expressed using identities (B18) - (B23)
in the form

p̃ν ) ∑
m

M′

Lmνbm, q̃ν ) ∑
m

M′

Rmνbm, ν ) 1, ..., k (E8)

rν
p ) T[q̃ν] - Ω̃νp̃ν rν

q ) K[p̃ν] - Ω̃νq̃ν ν ) 1, ..., k
(E9)

(Wν)ij ) 1
Ω̃νI - Dij

(rν)ij ν ) 1, ..., 2k (E10)

i∂ê
∂t

) Lê - E(t)[µ, Fj] - E(t)[µ, ê] - E(t)[µ, T(ê)] +

[V(ê), ê] + [V(ê), T(ê)] + [V(T(ê)), ê] + [V(T(ê)), Fj]
(F1)

T(ê) ) 1
2

[[ê, Fj], ê] ) (I - 2Fj)ê2 (F2)

ê(t) ) ∑
R>0

(êRzR(t) + êR
† zR

/(t)) R ) 1, ..., M (F3)

i
∂zR

∂t
) ΩRzR - E(t)µ-R - E(t)∑

â
µ-R,âzâ -

E(t)∑
âγ

µ-R,âγzâzγ + ∑
âγ

V-R,âγzâzγ + ∑
âγδ

V-R,âγδzâzγzδ

(F4)

z(t) ) z(1)(t) + z(2)(t) + z(3)(t) + .... (F5)

P(t) ) ∑
â

µâzâ +
1

2
∑
âγ

µâγzâzγ. (F6)

µR ) Tr([Fj, êR][µ, Fj]) ) Tr(µêR) (F7)

µRâ ) Tr([Fj, êR][µ, êâ]) ) Tr(µ(I - 2Fj)(êRêâ + êâêR))

(F8)

µR,âγ ) Tr([Fj, êR][µ, 1
2

[[êâ, Fj], êγ]) )

- 1
2

Tr((µêR + êRµ)(êâêγ + êγêâ)) (F9)

VR,âγ )
1

2!
∑
âγ

perm(Tr([Fj, êR][V(êâ), êγ]) +

Tr([Fj, êR][V(12[[êâ, Fj], êγ]), Fj])) )
1

2
Tr((I - 2Fj) ×

((êâêγ + êγêâ)V(êR) + (êRêâ + êâêR)V(êγ) +

(êRêγ + êγêR)V(êâ))) (F10)
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Here VR,âγ and VR,âγδ have been symmetrized with
respect to all permutations of indices â, γ and â, γ,
δ, respectively. These anharmonicities describe cou-
pling among electronic oscillators mediated by Cou-
lomb V and dipole µ interactions (Note that the
indices R, â, γ, and δ run over positive and negative
modes). µ describes optical transitions between oscil-
lators whereas V describes scattering between oscil-
lators induced by the many-body Coulomb interac-
tion. It is important to note that all the anharmonic
coefficients can be calculated using the ground-state
density matrix Fj as well as the eigenmodes êν of the
linearized TDHF equation. Equations F6 and F4 map
the task of computing the optical response of the
original many-electron system onto finding the oscil-
lators and the nonlinear couplings µ and V. We
further note that the expressions for anharmonicities
involving multiplications of electronic modes matrices
are better suited for numerical computations than
those involving commutators.

B. Definition of Nonlinear Response Functions
Optical polarizabilities are induced by the deviation

of the reduced density matrix from its equilibrium
value Fj expanded in powers of the external field E(t).
Following refs 76 and 77, we define time domain
response functions R(j)(t, τ1, ..., τj) up to the third order
(j ) 1,2,3):

The corresponding frequency domain polarizabilities
R(j)(-ωs;ω1,...,ωj) (j ) 1,2,3) are defined by

Here E(ω) is the Fourier transform of the time-
dependent external field E(t) defined as

The relations between response functions and polar-
izabilities are obtained by comparing eqs F12-F14
with eqs F15-F17 and using the Fourier transform
eq F18:

The linear, second, and third order polarizabilities
are usually denoted R, â, and γ, respectively

C. Linear Response
We use the linear response to illustrate the strat-

egy of computing polarizabilities. We start with the
equation of motion for zR

(1) obtained from eq F4 using
expansion eq F5:

The solution of this equation for zR
(1) and its complex

conjugate zR
/(1) is

VR,âγδ )
1

3!
∑
âγδ

perm(Tr([Fj, êR][V(12[êâ, Fj], êγ]), êδ]) +

Tr([Fj, ê-R][V(êδ),
1

2
[[êâ, Fj], êδ]])) )

1

6
Tr((I - 2Fj)(êRêδ + êδêR)V((I - 2Fj)(êâêγ + êγêâ))) +

1

6
Tr((I - 2Fj)(êRêγ + êγêR)V((I - 2Fj)(êδêâ + êâêδ))) +

1

6
Tr((I - 2Fj)(êRêâ + êâêR)V((I - 2Fj)(êδêR +

êγêδ))) -
1

6
Tr((êRV(êâ) + V(êâ)êR)(êγêδ + êδêγ)) -

1

6
Tr((êRV(êγ) + V(êγ)êR)(êâêδ + êδêâ)) -

1

6
Tr((êRV(êâ) + V(êδ)êR)(êâêγ + êγêâ)) (F11)

P(1)(t) ) ∫-∞
t

dτE(τ)R(1)(t,τ) (F12)

P(2)(t) ) ∫-∞
t ∫-∞

t
dτ1dτ2E(τ1)E(τ2)R

(2)(t, τ1, τ2)
(F13)

P(3)(t) )

∫-∞
t ∫-∞

t ∫-∞
t

dτ1dτ2dτ3E(τ1)E(τ2)E(τ3)R
(3)(t, τ1, τ2, τ3)

(F14)

P(1)(ωs) ) ∫-∞
∞ dω

2π
R(1)(-ωs;ω)E(ω) (F15)

P(2)(ωs) ) ∫-∞
∞ ∫-∞

∞ dω1

2π
dω2

2π
R(2)(-ωs;ω1,ω2)E(ω1)E(ω2)

(F16)

P(3)(ωs) ) ∫-∞
∞ ∫-∞

∞ ∫-∞
∞ dω1

2π
dω2

2π
dω3

2π
R(3) ×

(-ωs;ω1,ω2,ω3)E(ω1)E(ω2)E(ω3) (F17)

f(ω) ≡ ∫ dtf(t)eiωt f(t) ≡ 1
2π ∫ dωf(ω)e-iωt (F18)

R(1)(-ωs;ω) ) ∫-∞
∞

dteiωst ∫-∞
t

dτe-iωτ R(1)(t,τ) (F19)

R(2)(-ωs;ω1,ω2) )

∫-∞
∞

dteiωst ∫-∞
t

dτ1e
-iω1τ1 ∫-∞

t
dτ2e

-iω2τ2 R(2)(t, τ1, τ2)
(F20)

R(3)(-ωs;ω1,ω2,ω3) )

∫-∞
∞

dteiωst ∫-∞
t

dτ1e
-iω1τ1 ∫-∞

t
dτ2e

-iω2τ2 ×
∫-∞

t
dτ3e

-iω3τ3 R(3)(t; τ1, τ2, τ3). (F21)

R(1)(ωs ) ω;ω) ) 2πδ(-ωs + ω)R(ω) (F22)

R(2)(ωs ) ω1 + ω2,ω1,ω2) )
2πδ(-ωs + ω1 + ω2)â(ω1,ω2) (F23)

R(3)(ωs ) ω1 + ω2 + ω3;ω1,ω2,ω3) )
2πδ(-ωs + ω1 + ω2 + ω3)γ(ω1,ω2,ω3) (F24)

i
∂zR

(1)

∂t
) ΩRzR

(1) - E(t)µ-R R ) 1, ..., M (F25)

zR
(1) ) i ∫-∞

t
E(τ)µ-RGR(t - τ) R > 0 (F26)

zR
/(1) ) z-R

(1) ) -i ∫-∞
t

E(τ)µRGR
/(t - τ) R > 0

(F27)

3204 Chemical Reviews, 2002, Vol. 102, No. 9 Tretiak and Mukamel



where we introduce time-domain Green function

and θ(t) is the Heavyside step function. Using the
notation SR ) sign(R), eqs F4 and eqs F4 can be
represented in a compact notation.

where positive and negative R correspond to zR
(1) and

zR
/(1), respectively.
Inserting eq F29 into eq F6 we finally obtain for

the linear polarizability

The linear response function (eq F12) is then

Using eqs F19 and F22, we obtain the linear polar-
izability

Here and below ΩR is positive (negative) for all R >
0 (R < 0) according to the convention Ω-R ) -ΩR.
Finally, the expression for static linear polarizability
can be obtained from eq F32 by setting ω ) 0:

D. Second-Order Response

The equation of motion for zR
(2) is

and its solution, which includes complex conjugate,
is

where

Inserting eqs F29 and F35 into eq F6 and keeping
all terms up to the second-order, we find that the
second-order response function has three contribu-
tions:

where

Using eq F20, we finally obtain the second-order
polarizability which is symmetric with respect to ω1
and ω2 permutations

Here and below Ων, ν ) R, â, γ, is positive (negative)
for all ν > 0 (ν < 0) according to the convention
Ω-ν ) -Ων. Finally, by setting ω1 and ω2 to zero and
using identities SνΩν ) |Ων| and µ-ν ) µν we obtain
the second-order static polarizability:

GR(t) ) θ(t)e-iΩRt G-R(t) ) θ(t)e-iΩ-Rt ) θ(t)eiΩRt

(F28)

zR
(1) ) iSR ∫-∞

t
E(τ)µ-RGR(t - τ) R ) -M, ..., M

(F29)

P(1)(t) ) ∑
R)-M,...,M

zR
(1)µR )

∑
R)-M,...,M

iSR ∫-∞
t

E(τ)µ-RµRGR(t - τ) (F30)

R(1)(t, τ) ) i ∑
R)-M,...,M

iSRµ-RµRGR(t - τ) (F31)

R(ω) ) ∑
R)-M,...,M

SRµ-RµR

ΩR - ω
) ∑

R)1,...,M

2ΩR|µR|2

ΩR
2 - ω2

(F32)

R(0) ) ∑
R)1,...,M

2|µR|2

ΩR

(F33)

i
∂z(2)

∂t
) ΩRzR

(2) - E(t)∑
â

µ-R,âzâ
(1) + ∑

â,γ
V-Râγzâ

(1) zγ
(1)

R ) 1, ..., M, â,γ ) -M,..., M (F34)

zR
(2) ) i∫-∞

t
dτ1SRGR(t - τ1)ΓR

(2)(τ1) R ) -M, ..., M
(F35)

ΓR
(2)(τ1) ) ∑

âγ
V-Râγ ∫-∞

τ1 ∫-∞
τ1 dτ2dτ3E(τ2) ×

E(τ3)µ-âµ-γSâSγGâ(τ1 - τ2)Gγ(τ1 - τ3) +

iE(τ1)∑
â

µ-Râ ∫-∞
τ1 E(τ2)µ-âSâGâ(τ1 - τ2),

R, â, γ ) -M, ..., M (F36)

R(2)(t,τ1τ2) ) RI
(2) + RII

(2) + RIII
(2) (F37)

RI
(2)(t,τ1τ2) )

-∑
Râ

µ-R,âµRµ-âSRSâGR(t - τ1)Gâ(τ1 - τ2) (F38)

RII
(2)(t,τ1τ2) )

i ∫τ2

t
dτ ∑

Râγ
V-RâγµRµ-âµ-γSRSâSγGR(t - τ) ×

Gâ(τ - τ1)Gγ(τ - τ2) (F39)

RIII
(2)(t,τ1τ2) )

-∑
Râ

µRâµ-Rµ-âSRSâG(t - τ1)G(t - τ2) (F40)

â(ω1,ω2) )

-∑
Râγ

V-R,âγµRµ-âµ-γSRSâSγ

(ΩR - ω1 - ω2)(Ωâ - ω1)(Ωγ - ω2)
+

1

2
∑
Râ

µ-RâµRµ-âSRSâ

(ΩR - ω1 - ω2)(Ωâ - ω2)
+

1

2
∑
Râ

µ-RâµRµ-âSRSâ

(ΩR - ω1 - ω2)(Ωâ - ω1)
+

1

2
∑
Râ

µRâµ-Rµ-âSRSâ

(SRΩR - ω1)(SâΩâ - ω2)
,

R, â, γ ) -M, ..., M (F41)

â(0) ) -∑
Râγ

VR,âγµRµâµγ

|ΩRΩâΩγ|
+

3

2
∑
Râ

µRâµRµâ

|ΩRΩâ|
R, â, γ ) -M, ..., M (F42)
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E. Third-Order Response

The equation of motion for zR
(3) is

and its solution, which includes the complex conju-
gate, is

where

Here R, â, γ, δ ) -M, ..., M and z(1)(τ1) and z(2)(τ1) are
given by eqs F29 and F35. Inserting eqs F29, F35,
and F44 into eq F6 and keeping all terms up to third-
order we obtain the following 8-term expression for
the third-order response function:

where

Using eqs F21 and F24, we obtain the following
8-term expression for the third-order polarizability
(symmetrized with respect to ω1, ω2, and ω3 permu-
tations)

where

i
∂zR

(3)

∂t
)

ΩRzR
(3) - [E(t)∑

â
µ-Râzâ

(2) + E(t)∑
âγ

µ-Râγzâ
(1) zγ

(1) -

2∑
âγ

V-Râγzâ
(1) zγ

(2) -∑
âγδ

V-Râγδzâ
(1) zγ

(1) zδ
(1)]

R ) 1, ..., M, â, γ, δ ) -M, ..., M (F43)

zR
(3) ) i∫-∞

t
dτ1SRGR(t - τ1)ΓR

(3)(τ1) R ) -M, ..., M
(F44)

ΓR
(3)(τ1) ) E(τ1)∑

â
µ-Râzâ

(2)(τ1) +

E(τ1)∑
âγ

µ-Râγzâ
(1)(τ1)zγ

(1)(τ1) -

2∑
âγ

V- Râγzâ
(1)(τ1)zγ

(2)(τ1) -

∑
âγδ

V-Râγδzâ
(1)(τ1)zγ

(1)(τ1)zδ
(1)(τ1) (F45)

R(3)(t,τ1τ2τ3) )
RI + RII + RIII + RIV + RV + RVI + RVII + RVIII

(F46)

RI
(3)(t,τ1τ2τ3) ) -i∑

Râγ
µ-Râµ-âγµRµ-γSRSâSγGR ×

(t - τ1)Gâ(τ1 - τ2)Gγ(τ2 - τ3) (F47)

RII
(3)(t,τ1τ2τ3) ) - ∑

Râγδ
µ-RâV-âγδµRµ-γµ-δSRSâSγSδ ×

∫τ3

t
dτGR(t - τ1)Gâ(τ1 - τ)Gγ(τ - τ2)Gδ(τ - τ3) (F48)

RIII
(3)(t,τ1τ2τ3) ) -i∑

Râγ
µ-RâγµRµ-âµ-γSRSâSγGR ×

(t - τ1)Gâ(τ1 - τ2)Gγ(τ1 - τ3) (F49)

RIV
(3)(t,τ1τ2τ3) )

-2 ∑
Râγδ

V-Râγµ-γδµRµ-âµ-δSRSâSγSδ ×

∫τ3

t
dτGR(t - τ)Gâ(τ - τ1)Gγ(τ - τ2)Gδ(τ2 - τ3) (F50)

RV
(3)(t,τ1τ2τ3) )

2i ∑
Râγδη

V-RâγV-γδηµRµ-âµ-δµ-ηSRSâSγSδSη ×

∫τ3

t
dτ∫t3

t
dτ′GR(t - τ)Gâ(τ - τ1)Gγ(τ - τ′) ×

Gδ(τ′ - τ2)Gη(τ′ - τ3) (F51)

RVI
(3)(t,τ1τ2τ3) ) ∑

Râγδ
V-RâγδµRµ-âµ-γµ-δSRSâSγSδ ×

∫τ3

t
dτGR(t - τ)Gâ(τ - τ1)Gγ(τ - τ2)Gδ(τ - τ3) (F52)

RVII
(3) (t,τ1τ2τ3) )

-2i∑
Râγ

µRâµ-âγµ-Rµ-γSRSâSγGR(t - τ1)Gâ(τ - τ2) ×
Gγ(τ2 - τ3) (F53)

RVIII
(3) (t,τ1τ2τ3) )

-2 ∑
Râγδ

µRâV-âγδµ-Rµγµ-δSRSâSγSδ ×

∫τ3

t
dτGR(t - τ1)Gâ(t - τ)Gγ(τ - τ2)Gδ(τ - τ3) (F54)

γ(ω1,ω2,ω3) )
1

3!
∑

ω1ω2ω3

perm

(γI + γII + γIII + ... γVIII)

(F55)

γI ) ∑
Râγ

µ-Râµ-âγµRµ-γSRSâSγ

(ΩR - ω1 - ω2 - ω3)(Ωâ - ω2 - ω3)(Ωγ - ω3)
(F56)

γII )

∑
Râγδ

-µ-RâV-âγδµRµ-γµ-δSRSâSγSδ

(ΩR - ω1 - ω2 - ω3)(Ωâ - ω2 - ω3)(Ωγ - ω2)(Ωδ - ω3)

(F57)
γIII )

∑
Râγ

µ-RâγµRµ-âµ-γSRSâSγ

(ΩR - ω1 - ω2 - ω3)(Ωâ - ω2 - ω3)(Ωγ - ω3)
(F58)

γIV )

∑
Râγδ

-2V-Râγµ-γδµRµ-âµ-δSRSâSγSδ

(ΩR - ω1 - ω2 - ω3)(Ωâ - ω1)(Ωγ - ω2 - ω3)(Ωδ - ω3)

(F59)
γV )

∑
Râγδη

2V- RâγV- γδηµRµ- âµ- δµ- ηSRSâSγSδSη

(ΩR - ω1 - ω2 - ω3)(Ωâ - ω1)(Ωγ - ω2 - ω3)(Ωδ - ω2)(Ωη - ω3)

(F60)

γVI ) ∑
Râγδ

-V-RâγδµRµ-âµ-γµ-δSRSâSγSδ

(ΩR - ω1 - ω2 - ω3)(Ωâ - ω1)(Ωγ - ω2)(Ωδ - ω3)
(F61)
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Here ν ) R, â, γ, δ, η ) -M, ..., M and Ων is positive
(negative) for all ν > 0 (ν < 0) according to the
convention Ω-ν ) -Ων. Note, that in eq F41 the
permutations over ω1 and ω2 were written explicitly.
Finally, by setting ω1, ω2, and ω3 to zero and using
identities SνΩν ) |Ων| and µ-ν ) µν we obtain the
third-order static polarizability:
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(58) Löwdin, P.-O. Rev. Mod. Phys. 1962, 34, 80.
(59) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833, 1841, 2338, 2343.
(60) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Intro-

duction to Advanced Electronic Structure Theory; McGraw-
Hill: New York, 1989.

(61) Bader, R. F. W. Atoms in Molecules: A Quantum Theory;
Oxford: New York, 1990.

(62) Nesbet, R. K. Phys. Rev. A 2000, 6204, 701.
(63) Nesbet, R. K. Int. J. Quantum Chem. 2001, 85, 405.
(64) Weiner, B.; Trickey, S. B. Adv. Quantum Chem. 1999, 35, 217.
(65) Weiner, B.; Trickey, S. B. J. Mol. Str.-Theochem 2000, 501, 65.
(66) Micha, D. A. Int. J. Quantum Chem. 2000, 80, 394.
(67) Gross, E. K. U.; Dobson, J. F.; Petersilka, M. Density Functional

Theory II 1996, 181, 81.
(68) Density Matrixes and Density Functions, Proc. A. J. Coleman

Symp.; Erdahl, R., Smith, V. H., Eds.; D. Reidel Publishing:
Dordrecht, 1987.

(69) Coleman, A. J.; Yukalov, V. I. Reduced Density Matrices;
Springer, New York, 2000.

(70) Valdemoro, C.; Tel, L. M.; PerezRomero, E. Adv. Quantum Chem.
1997, 28, 33.

γVII ) ∑
Râγ

µRâµ-âγµ-Rµ-γSRSâSγ

(ΩR - ω1)(Ωâ - ω2 - ω3)(Ωγ - ω3)
(F62)

γVIII ) ∑
Râγδ

-µRâV-âγδµ-Rµ-γµ-δSRSâSγSδ

(ΩR - ω1)(Ωâ - ω2 - ω3)(Ωγ - ω2)(Ωδ - ω3)
(F63)

γ(0) ) ∑
Râγ

µRâγµRµâµγ

|ΩRΩâΩγ|
+ ∑

Râγ

2µRâµ-âγµRµγ

|ΩRΩâΩγ|
-

∑
Râγδ

4µRâV-âγδµRµγµδ

|ΩRΩâΩγΩδ|
+ ∑

Râγδη

2VRâγV-γδηµRµâµδµη

|ΩRΩâΩγΩδΩη|
-

∑
Râγδ

VRâγδµRµâµγµδ

|ΩRΩâΩγΩδ|
,

R, â, γ, δ, η ) -M, ..., M (F64)

Density Matrix Analysis in Conjugated Molecules Chemical Reviews, 2002, Vol. 102, No. 9 3207



(71) Nakata, M.; Ehara, M.; Yasuda, K.; Nakatsuji, H. J. Chem. Phys.
2000, 112, 8772.

(72) Mazziotti, D. A. J. Chem. Phys. 2000, 112, 10125.
(73) Rohlfing, M.; Louie, S. G. Phys. Rev. Lett. 1998, 80, 3320.
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(271) Silinsh, E. A.; Cápek, V. Organic Molecular Crystals; AIP
Press: American Institute of Physics, New York, 1994.
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